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Introduction

@ We want to study problems of the following form:

SUP{xn}i, O BT (Xt xe41)  (SP)
=0

s.t.
xev1 €M(x), t=0,1,2,..
xp € X given
Corresponding to any such problem, we have a functional equation of

the form:

V(X) = SUPycr(x) [F(Xay) + BV(_)/)] , VxeX
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The Principle of Optimality

@ The Principle of Optimality allow us to study the relationship between
solutions to the problems (SP) and (fE).

@ Define A as the graph of I':

A={(x,y) e XxX:y € [(x)}

And let the real-valued function F : A — R be the one-period return
function, and let 5 > 0 the stationary discount factor. Thus the
'givens' for the problem are X, I, F and .
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The Principle of Optimality

o Call any sequence {x;:}?2, in X a plan. Given xg € X, let:

M(x0) = {{xt}s20 : Xe+1 € M(x¢), t =0,1,...}

is the set of plans that are feasible from xp. This means, IN(xp) is the
set of sequences that satisfy the constraints in (SP).

@ Now let's impose some assumptions to guarantee both the
equivalence between the FE and the SP.
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The Principle of Optimality - A.4.1 and A.4.2

e Assumption 4.1: ['(x) is nonempty, forall x € X.

e Assumption 4.2: For all xo € X and X € M(xo),

lIMp—so00 Y p—o B F(xe, xe+1) exists (although it may be plus or minus
infinity).
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The Principle of Optimality - A.4.1 and A.4.2

Let X, ', F, and B satisfy Assumptions 4.1-4.2. Then the function v*
satisfies (FE).
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The Principle of Optimality - A.4.1 and A.4.2

Theorem

Let X, T, F, and (3 satisfy Assumptions 4.1-4.2. If v is a solution to (FE)
and satisfies:

nIl_)hgo B"v(xp) =0, all (x0,x1,...) € N(x0),all xg € X

Then v = v*
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The Principle of Optimality - A.4.1 and A.4.2

Theorem

Let X, ', F, and (3 satisfy Assumptions 4.1-4.2 and let X* € IN(xg) be a
feasible plan that attains the supremum in (SP) for initial state xy. Then:

vi(x{) = F(x{,x{ 1), t=0,1,2,..
Then v = v*
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Bounded Returns - Existence

Now we study some assumptions that are needed to guarantee both the
existence and the uniqueness of a solution in our problem of interest.

Assumption 4.3: X is a convex subset of R/, and the correspondence T :
X — X is nonempty, compact-valued, and continuous.

Assumption 4.4: The function F : A — R is bounded and continuous,
and 0 < B < 1.
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Bounded Returns - Existence

Theorem

Let X, T, F, and j3 satisfy Assumptions 4.3-4.4 and let C(X) be the space
of bounded and continuous functions f : X — R, with the sup norm. Then
the operator T maps C(X) into itself, T : C(X) — C(X), T has a unique
fixed point v € C(X); and for all vo € C(X),

| T"vo —v|| < B"||vo— V||, n=0,1,2,..

Moreover, given v, the optimal policy correspondence G : X — X defined
by (2) is compact-valued and uhc.
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Bounded Returns - Monotonicity

Now we describe some assumptions that whenever they are present, we
have that the value function inherits some characteristics of the return

function.

Assumption 4.5: For each y, F(.,y) is strictly increasing in each of its |
arguments.

Assumption 4.6: I is monotone in the sense that x < x’ implies
M(x) C I(x).
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Bounded Returns - Monotonicity

Theorem

Let X, T, F, and 3 satisfy Assumptions 4.3-4.6, and let v be the unique
solution to the SP. Then v is strictly increasing.

| T"vo —v|| < B"||lw—vV]||, n=0,1,2,..

Moreover, given v, the optimal policy correspondence G : X — X defined
by (2) is compact-valued and uhc.
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Bounded Returns - Concavity

o Assumption 4.7: F is strictly concave, that is:

F [O(X,y)] +(1- 0)(X',y')] > 0F(x,y)+ (1 —0)F(xX,y)
all (x,y), (x',y')e A, and all § € (0,1).

@ Assumption 4.8: I is convex in the sense that for any 0 < 0 <1,
and x,x' € X,

y€l(x) and y' e (x)implies
Oy + (1 —0)y’ €T [6x + (1 — 6)X]
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Bounded Returns - Concavity

Let X, ', F, and B satisfy Assumptions 4.3-4.4 and 4.7-4.8, and let v be
the unique solution to the SP, and let G be the policy rules. Then v is
strictly concave and G is a continuous, single-valued function.
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Bounded Returns - Differentiability

@ Assumption 4.9: F is continuously differentiable on the interior of A.
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Bounded Returns - Differentiability

Theorem

Let X, T, F, and (8 satisfy Assumptions 4.3-4.4 and 4.7-4.9, and let v be
the unique solution to the SP, and let G be the policy rules. If xg € int(X)
and g(xo) € I'(xo0), then v is continuously differentiable at x, with
derivatives given by:

vi(xo) = Fi[x0,8(x0], 1=1,2,...,1.
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