Dynamic Programming and Recursive Representation

Diego Ascarza

RIEF

Introduction

• We want to study problems of the following form:

$$sup_{\{x_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} F(x_{t}, x_{t+1}) \quad (SP)$$

$$s.t.$$

$$x_{t+1} \in \Gamma(x_{t}), \quad t = 0, 1, 2, ...$$

$$x_{0} \in X \quad \text{given}$$

Corresponding to any such problem, we have a functional equation of the form:

$$v(x) = \sup_{y \in \Gamma(x)} [F(x, y) + \beta v(y)], \quad \forall x \in X$$

The Principle of Optimality

- The Principle of Optimality allow us to study the relationship between solutions to the problems (SP) and (fE).
- Define A as the graph of Γ:

$$A = \{(x, y) \in XxX : y \in \Gamma(x)\}$$

And let the real-valued function $F:A\to\mathbb{R}$ be the one-period return function, and let $\beta\geq 0$ the stationary discount factor. Thus the 'givens' for the problem are X,Γ,F and β .

The Principle of Optimality

• Call any sequence $\{x_t\}_{t=0}^{\infty}$ in X a plan. Given $x_0 \in X$, let:

$$\Pi(x_0) = \{\{x_t\}_{t=0}^{\infty} : x_{t+1} \in \Gamma(x_t), t = 0, 1, ...\}$$

is the set of plans that are *feasible* from x_0 . This means, $\Pi(x_0)$ is the set of sequences that satisfy the constraints in (SP).

• Now let's impose some assumptions to guarantee both the equivalence between the FE and the SP.

- Assumption 4.1: $\Gamma(x)$ is nonempty, forall $x \in X$.
- Assumption 4.2: For all $x_0 \in X$ and $\hat{x} \in \Pi(x_0)$, $\lim_{n \to \infty} \sum_{t=0}^n \beta^t F(x_t, x_{t+1})$ exists (although it may be plus or minus infinity).

Theorem

Let X, Γ , F, and β satisfy Assumptions 4.1-4.2. Then the function v^* satisfies (FE).

Theorem

Let X, Γ , F, and β satisfy Assumptions 4.1-4.2. If v is a solution to (FE) and satisfies:

$$\lim_{n\to\infty}\beta^n v(x_n)=0,\quad all\quad (x_0,x_1,...)\in \Pi(x_0), all\quad x_0\in X$$

Then $v = v^*$

Theorem

Let X, Γ , F, and β satisfy Assumptions 4.1-4.2 and let $\hat{x}^* \in \Pi(x_0)$ be a feasible plan that attains the supremum in (SP) for initial state x_0 . Then:

$$v^*(x_t^*) = F(x_t^*, x_{t+1}^*), \quad t = 0, 1, 2, ...$$

Then $v = v^*$

Bounded Returns - Existence

Now we study some assumptions that are needed to guarantee both the existence and the uniqueness of a solution in our problem of interest.

Assumption 4.3: X is a convex subset of \mathbb{R}^I , and the correspondence $\Gamma: X \to X$ is nonempty, compact-valued, and continuous.

Assumption 4.4: The function $F:A\to\mathbb{R}$ is bounded and continuous, and $0<\beta<1$.

Bounded Returns - Existence

Theorem

Let X, Γ , F, and β satisfy Assumptions 4.3-4.4 and let C(X) be the space of bounded and continuous functions $f: X \to \mathbb{R}$, with the sup norm. Then the operator T maps C(X) into itself, $T: C(X) \to C(X)$, T has a unique fixed point $v \in C(X)$; and for all $v_0 \in C(X)$,

$$||T^n v_0 - v|| \le \beta^n ||v_0 - v||, \quad n = 0, 1, 2, ...$$

Moreover, given v, the optimal policy correspondence $G: X \to X$ defined by (2) is compact-valued and uhc.

Bounded Returns - Monotonicity

Now we describe some assumptions that whenever they are present, we have that the value function inherits some characteristics of the return function.

Assumption 4.5: For each y, F(.,y) is strictly increasing in each of its I arguments.

Assumption 4.6: Γ is monotone in the sense that $x \leq x'$ implies $\Gamma(x) \subseteq \Gamma(x')$.

Bounded Returns - Monotonicity

Theorem

Let X, Γ , F, and β satisfy Assumptions 4.3-4.6, and let v be the unique solution to the SP. Then v is strictly increasing.

$$||T^n v_0 - v|| \le \beta^n ||v_0 - v||, \quad n = 0, 1, 2, ...$$

Moreover, given v, the optimal policy correspondence $G: X \to X$ defined by (2) is compact-valued and uhc.

Bounded Returns - Concavity

• Assumption 4.7: F is strictly concave, that is:

$$F\left[\theta(x,y)\right] + (1-\theta)(x',y')\right] > \theta F(x,y) + (1-\theta)F(x',y')$$
 all (x,y), (x',y') \in A, and all $\theta \in (0,1)$.

• **Assumption 4.8:** Γ is convex in the sense that for any $0 \le \theta \le 1$, and $x, x' \in X$,

$$y \in \Gamma(x)$$
 and $y' \in \Gamma(x')$ implies $\theta y + (1 - \theta)y' \in \Gamma[\theta x + (1 - \theta)x']$

Bounded Returns - Concavity

Theorem

Let X, Γ , F, and β satisfy Assumptions 4.3-4.4 and 4.7-4.8, and let v be the unique solution to the SP, and let G be the policy rules. Then v is strictly concave and G is a continuous, single-valued function.

Bounded Returns - Differentiability

• Assumption 4.9: F is continuously differentiable on the interior of A.

Bounded Returns - Differentiability

Theorem

Let X, Γ , F, and β satisfy Assumptions 4.3-4.4 and 4.7-4.9, and let v be the unique solution to the SP, and let G be the policy rules. If $x_0 \in \text{int}(X)$ and $g(x_0) \in \Gamma(x_0)$, then v is continuously differentiable at x_0 , with derivatives given by:

$$v_i(x_0) = F_i[x_0, g(x_0], \quad i = 1, 2, ..., I.$$