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Introduction

We want to study problems of the following form:

sup{xt+1}∞t=0

∞∑
t=0

βtF (xt , xt+1) (SP)

s.t.

xt+1 ∈ Γ(xt), t = 0, 1, 2, ...

x0 ∈ X given

Corresponding to any such problem, we have a functional equation of
the form:

v(x) = supy∈Γ(x) [F (x , y) + βv(y)] , ∀x ∈ X
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The Principle of Optimality

The Principle of Optimality allow us to study the relationship between
solutions to the problems (SP) and (fE).

Define A as the graph of Γ:

A = {(x , y) ∈ XxX : y ∈ Γ(x)}

And let the real-valued function F : A→ R be the one-period return
function, and let β ≥ 0 the stationary discount factor. Thus the
’givens’ for the problem are X , Γ,F and β.
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The Principle of Optimality

Call any sequence {xt}∞t=0 in X a plan. Given x0 ∈ X , let:

Π(x0) = {{xt}∞t=0 : xt+1 ∈ Γ(xt), t = 0, 1, ...}

is the set of plans that are feasible from x0. This means, Π(x0) is the
set of sequences that satisfy the constraints in (SP).

Now let’s impose some assumptions to guarantee both the
equivalence between the FE and the SP.
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The Principle of Optimality - A.4.1 and A.4.2

Assumption 4.1: Γ(x) is nonempty, forall x ∈ X .

Assumption 4.2: For all x0 ∈ X and x̂ ∈ Π(x0),
ĺımn→∞

∑n
t=0 β

tF (xt , xt+1) exists (although it may be plus or minus
infinity).
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The Principle of Optimality - A.4.1 and A.4.2

Theorem

Let X, Γ, F, and β satisfy Assumptions 4.1-4.2. Then the function v∗

satisfies (FE).
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The Principle of Optimality - A.4.1 and A.4.2

Theorem

Let X, Γ, F, and β satisfy Assumptions 4.1-4.2. If v is a solution to (FE)
and satisfies:

ĺım
n→∞

βnv(xn) = 0, all (x0, x1, ...) ∈ Π(x0), all x0 ∈ X

Then v = v∗
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The Principle of Optimality - A.4.1 and A.4.2

Theorem

Let X, Γ, F, and β satisfy Assumptions 4.1-4.2 and let x̂∗ ∈ Π(x0) be a
feasible plan that attains the supremum in (SP) for initial state x0. Then:

v∗(x∗t ) = F (x∗t , x
∗
t+1), t = 0, 1, 2, ...

Then v = v∗
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Bounded Returns - Existence

Now we study some assumptions that are needed to guarantee both the
existence and the uniqueness of a solution in our problem of interest.

Assumption 4.3: X is a convex subset of Rl , and the correspondence Γ :
X → X is nonempty, compact-valued, and continuous.

Assumption 4.4: The function F : A→ R is bounded and continuous,
and 0 < β < 1.
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Bounded Returns - Existence

Theorem

Let X, Γ, F, and β satisfy Assumptions 4.3-4.4 and let C(X) be the space
of bounded and continuous functions f : X → R, with the sup norm. Then
the operator T maps C(X) into itself, T : C (X )→ C (X ), T has a unique
fixed point v ∈ C (X ); and for all v0 ∈ C (X ),

||T nv0 − v || ≤ βn||v0 − v ||, n = 0, 1, 2, ...

Moreover, given v, the optimal policy correspondence G : X → X defined
by (2) is compact-valued and uhc.
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Bounded Returns - Monotonicity

Now we describe some assumptions that whenever they are present, we
have that the value function inherits some characteristics of the return
function.

Assumption 4.5: For each y, F(.,y) is strictly increasing in each of its l
arguments.

Assumption 4.6: Γ is monotone in the sense that x ≤ x ′ implies
Γ(x) ⊆ Γ(x ′).
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Bounded Returns - Monotonicity

Theorem

Let X, Γ, F, and β satisfy Assumptions 4.3-4.6, and let v be the unique
solution to the SP. Then v is strictly increasing.

||T nv0 − v || ≤ βn||v0 − v ||, n = 0, 1, 2, ...

Moreover, given v, the optimal policy correspondence G : X → X defined
by (2) is compact-valued and uhc.
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Bounded Returns - Concavity

Assumption 4.7: F is strictly concave, that is:

F
[
θ(x , y)] + (1− θ)(x ′, y ′)

]
> θF (x , y) + (1− θ)F (x ′, y ′)

all (x,y), (x’,y’)∈ A, and all θ ∈ (0, 1).

Assumption 4.8: Γ is convex in the sense that for any 0 ≤ θ ≤ 1,
and x , x ′ ∈ X ,

y ∈ Γ(x) and y ′ ∈ Γ(x ′)implies

θy + (1− θ)y ′ ∈ Γ
[
θx + (1− θ)x ′

]
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Bounded Returns - Concavity

Theorem

Let X, Γ, F, and β satisfy Assumptions 4.3-4.4 and 4.7-4.8, and let v be
the unique solution to the SP, and let G be the policy rules. Then v is
strictly concave and G is a continuous, single-valued function.
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Bounded Returns - Differentiability

Assumption 4.9: F is continuously differentiable on the interior of A.
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Bounded Returns - Differentiability

Theorem

Let X, Γ, F, and β satisfy Assumptions 4.3-4.4 and 4.7-4.9, and let v be
the unique solution to the SP, and let G be the policy rules. If x0 ∈ int(X )
and g(x0) ∈ Γ(x0), then v is continuously differentiable at x0, with
derivatives given by:

vi (x0) = Fi [x0, g(x0], i = 1, 2, ..., l .
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