
Introduction to Numerical Methods

Diego Ascarza

RIEF

Diego Ascarza (RIEF) Numerical Methods 1 / 28

Introduction

We will study now:

How to solve a non-linear system of equations (Newton-Raphson).

How to calculate numerical derivatives for a function.

How to solve the sequential Social Planner’s problem.

How to implement the value function iteration of the value function
for the same problem.

Diego Ascarza (RIEF) Numerical Methods 2 / 28

Newton Raphson

Let x = (x1, x2, ..., xn) be a vector of n components and
F : Rn → Rn.

Goal: Find a vector x̂ such that F (x̂) = 0.

Let’s denote by x the numerical approximation to the solution of x̂ .

By doing a Taylor Expansion for F around x :

F (x) ≈ F (x) + J(x)(x − x)

where J(x) is the Jacobian matrix of F evaluated at x :

M=


F11(x) F12(x) ... F1n(x)
F21(x) F22(x) ... F2n(x)
....

Fn1(x) Fn2(x) ... Fnn(x)


Diego Ascarza (RIEF) Numerical Methods 3 / 28

Newton Raphson

Taylor’s Theorem: If the approximator x is close enough to the
solution x̂ :

F (x̂) ≈ F (x) + J(x)(x̂ − x)

Then:

x̂ ≈ x − J(x)−1F (x)

This is the mathematical foundation of Newton-Raphson’s method.

Diego Ascarza (RIEF) Numerical Methods 4 / 28

Algorithm

1 Propose a initial solution x0, using as much information you have
about F and initialize s = 0.

2 Calculate the vector F (x s) and the matrix J(x s).

3 Calculate x s+1 using the rule:

x s+1 = x s − J(x s)−1F (x s)

4 Evaluate the distance || x s+1 − x s ||. If the distance is greater than
the tolerance criteria, go back to step 2 with s = s + 1. Otherwise,
finish with x = x s+1.

Diego Ascarza (RIEF) Numerical Methods 5 / 28

Algorithm

1 Propose a initial solution x0, using as much information you have
about F and initialize s = 0.

2 Calculate the vector F (x s) and the matrix J(x s).

3 Calculate x s+1 using the rule:

x s+1 = x s − J(x s)−1F (x s)

4 Evaluate the distance || x s+1 − x s ||. If the distance is greater than
the tolerance criteria, go back to step 2 with s = s + 1. Otherwise,
finish with x = x s+1.

Diego Ascarza (RIEF) Numerical Methods 6 / 28

Norms

There are different ways to measure the distance between two vectors
of dimension n:

1 Euclidean norm:

|| x − y ||=
[
(x1 − y1)2 + ...+ (xn − yn)2

]0,5
Sup. norm:

|| x − y ||= max {| x1 − y1 |, ..., | xn − yn |}

Diego Ascarza (RIEF) Numerical Methods 7 / 28

Be careful

If x0 starts close enough to x̂ , we can show that Newton-Raphson
converges to x̂ .

But, if x0 is not close enough to x̂ , the method can:
1 Converge to a different solution (if the solution is not unique), or

2 Diverge, i.e., the distance || x s+1 − x s || grows with each iteration.

We need to try different values for x0 before we achieve a definite
answer.

Another disadvantage of Newton Raphson is that it requires analytical
expressions for all the partial derivatives of F.

Diego Ascarza (RIEF) Numerical Methods 8 / 28

Secant Method

The secant method is similar to Newton-Raphson, but it uses
numerical derivatives.

Let’s write the Jacobian matrix as follows:

J(x) = [J1(x), J2(x), ..., Jn(x)]

where Ji (x) is a column vector with the n partial derivatives of F
respect to xi .

Problem: Find a numerical approximation for each Ji (x).

Let h be a column vector of n components (steps).

Diego Ascarza (RIEF) Numerical Methods 9 / 28

Secant Method

If the elements of h are small enough, we can use a Taylor expansion:

F (x1 + h1, x2, ..., xn) ≈ F (x) + J1(x)h1

F (x1, x2 + h2, ..., xn) ≈ F (x) + J2(x)h2

..

F (x1, x2, ..., xn + hn) ≈ F (x) + Jn(x)hn

from where we obtain, for each i = 1, ..., n

Ji (x) ≈ 1

hi
[F (x1, ..., xi + hi , ..., xn)− F (x)]

Diego Ascarza (RIEF) Numerical Methods 10 / 28

Secant Method

An alternative is to approximate the Jacobian matrix from the left:

Ji (x) ≈ 1

hi
[F (x)− F (x1, ..., xi − hi , ..., xn)]

It is recommendable to take an average of both:

Ji (x) ≈ 1

2hi
[F (x1, ..., xi + hi , ..., xn)− F (x1, ..., xi − hi , ..., xn)]

Unless there is a discontinuity of F at x.

The choice of h is arbitrary. It is recommendable to try also with values
progressively lower until the numerical value of the derivative is stable.

Diego Ascarza (RIEF) Numerical Methods 11 / 28

Solving the Social Planner’s Problem

Solving the deterministic problem of the Social Planner’s, we obtain a
system of equations in difference of first order:

u′(ct
βu′(ct+1)

= f ′(kt+1) + (1− δ)

ct = f (kt)− kt+1 + (1− δ)kt

we can write this in general terms as:

ΨK (kt , kt+1, ct , ct+1) = 0

ΨC (kt , kt+1, ct , ct+1) = 0

Diego Ascarza (RIEF) Numerical Methods 12 / 28

Solving the Social Planner’s Problem

We can also combine both conditions to obtain:

u′[f (kt)− kt+1 + (1− δ)kt]

βu′[f (kt+1)− kt+2 + (1− δ)kt+1]
= f ′(kt+1) + (1− δ)

A equation of differences of second order that we can write as:

Ψ(kt , kt+1, kt+2) = 0

Finally, we know that kt converges monotonically to its steady state
value:

k∗ = (f ′)−1
[

1

β
− (1− δ)

]

Diego Ascarza (RIEF) Numerical Methods 13 / 28

Solving the Social Planner’s Problem

Problem: Given the functional forms for u, f, and the value for the
parameters β and δ,

1 Find sequences of values for kt , ct that solve the system of equations
in differences ΨK = 0, ΨC = 0 or

2 Find a sequence of values for kt that solve the equation in differences
Ψ(.) = 0

... with initial condition k0 > 0 and final ĺımt→∞ kt = k∗

Diego Ascarza (RIEF) Numerical Methods 14 / 28

Using directly Newton-Raphson

Assuming that the model reaches the steady state in a finite number of
periods (T). The approximated solution must satisfy the system of
equations:

ΨK (k0, k1, c0, c1) = 0

ΨC (k0, k1, c0, c1) = 0

ΨK (k1, k2, c1, c2) = 0

ΨC (k1, k2, c1, c2) = 0

...........

ΨK (kT−1, kT , cT−1, cT) = 0

ΨC (kT−1, kT , cT−1, cT) = 0

with 2T equations and 2(T + 1) unknowns (including k0,c0,kT and cT)

Diego Ascarza (RIEF) Numerical Methods 15 / 28

Using directly Newton-Raphson

The first missing equation is k0 = ... (whatever it is its initial value).

The other missing equation can be k∗T or kT = kT−1.

We can the solve the system of equations using the Newton-Raphson
method (or the secant method).

There are so many equations (T is at least 100), but it usually works.

We need to propose initial sequences for k00 ,k0T and c00 ,...,cT0 . For
example, a straight line between k0 and kT = k∗.

Diego Ascarza (RIEF) Numerical Methods 16 / 28

Using directly Newton-Raphson

The method can also be applied to the equation in differences of
second order in k:

Ψ(k0, k1, k2) = 0

Ψ(k1, k2, k3) = 0

.........

Ψ(kT−2, kT−1, kT) = 0

This time we have T − 1 equations and T + 1 unknowns, the missing
equations are k0 = ... and some terminal condition kT = k∗ or
kT = kT−1.

An algorithm for this problem that does not require to solve so many
equations simultaneously is the one of Gauss-Seidel.

Diego Ascarza (RIEF) Numerical Methods 17 / 28

Gauss-Seidel

The algorithm is the following:

Propose an initial sequence k02 , ..., k
0
T−1 and initialize s = 0. For

example, a straight line between k0 and kT = k∗.

Given k0 and ks2 , find ks+1
1 by solving:

Ψ(k0, k
s+1
1 , k2) = 0

using Newton-Raphson or other method.

Find ks+1
2 , ..., ks+1

T−1 solving and iterating:

Ψ(ks+1
1 , ks+1

2 , ks3) = 0

...........

Ψ(ks+1
T−2, k

s+1
T−1, k

∗) = 0

Calculate || (ks+1
2 , ..., ks+1

T−1)− (ks2 , ..., k
s
T−1) ||. If the distance is

greater than the tolerance criteria then go back to the second step
with s = s + 1. Otherwise stop with kt = ks+1

t .
Diego Ascarza (RIEF) Numerical Methods 18 / 28

Summary

With any of these methods, once we find a sequence for kt we can
easily calculate sequences for ct , Yt , wt , rt and any other variable of
interest:

Yt = f (kt)

it = kt+1 − (1− δ)kt

ct = Yt − it

Kt = kt

rt = f ′(Kt)

wt = f (Kt)− f ′(Kt)Kt

Diego Ascarza (RIEF) Numerical Methods 19 / 28

Value Function Iteration

Using dynamic programming and the contraction mapping theorem,
departing from any function v0 (for example v0 = 0, the sequence vn

defined by:

vn+1(k) = maxk ′
{
u[f (k) + (1− δ)k − k ′] + βvn(k ′)

}
s.t.

k ′ ∈ [0, f (k) + (1− δ)k]

converges to the solution of the social planner v, when n→∞. Let’s
see how to implement numerically this method to approximate the
value function v.

Diego Ascarza (RIEF) Numerical Methods 20 / 28

Value Function Iteration

Initial setting:

Define a grid of capital for k, this is a vector:

K = (K1,K2, ...,Kp)

with K1 = kmin and Kp = kmax . For simplicity we can use points that
are equally distanced:

K2 = kmin + η K3 = kmin + 2η, etc

with η =
Kp−K1

p−1
If p is bigger (a broader grid), the approximation is more accurate but the
algorithm is slower.

Diego Ascarza (RIEF) Numerical Methods 21 / 28

Value Function Iteration

Define the matrix M as:

M =


F (K1,K1) F (K1,K2) F (K1,Kp)
F (K2,K1) F (K2,K2) F (K2,Kp)

....
F (Kp,K1) F (Kp,K2) F (Kp,Kp)


M saves any possible value for F (k , k ′) for each possible combination
(k , k ′) in our grid.

Eliminate all the entries that are not feasible by doing:

Mij = −1000000 if Kj > f (Ki) + (1− δ)Ki

Diego Ascarza (RIEF) Numerical Methods 22 / 28

Value Function Iteration

Propose an initial column vector V 0 ∈ Rp an initialize s = 0 (for
example, propose V 0 = 0.

Given V s and M, calculate V s+1 as:

V s+1 = max
{
M + β(V sxe)T

}
where T denotes the transpose of a matrix, e = [1, 1, 1..., 1] is a row
vector of size p with ones. The max is calculated row by row.

Compute || V s+1 − V s ||. If the distance is greater than the tolerance
criteria, go back to step 2 with s = s + 1. If the tolerance criteria is
satisfied, finish with V = V s+1.

Diego Ascarza (RIEF) Numerical Methods 23 / 28

Value Function Iteration

The result will be an approximation to the value function in each entry of
the grid:

V =


V (K1)
V (K2)
...

V (Kp)

 =


v(K1)
v(K2)
...

v(Kp)


The algorithm stores the optimal decision rule G as well:

G = argmax
{
M + β(Vxe)T

}
G is a column vector of n components, where Gi ∈ {1, ..., p} indicates
the number of the column that maximizes the row i.

Diego Ascarza (RIEF) Numerical Methods 24 / 28

Value Function Iteration

Therefore, departing from any k0 = Ki , we can recover the optimal
sequence for capital:

k1 = Kj with j = Gj

k2 = Kl with l = Gj

..........

Diego Ascarza (RIEF) Numerical Methods 25 / 28

Solving the Recursive Equilibrium Directly

The value function iteration is not ideal to solve directly the recursive
competitive equilibrium since it requires:

Two state variables (individual capital and aggregate capital) (not
that important).

The law of motion Γ is an unknown object when the consumer
decides to solve her Bellman equation.

We will have to follow then an algorithm of double iteration.

We suppose that the law of motion follows a polynomial of degree n:

K ′ = Γ(K) = α0 + α1K + α2K
2 + ...+ αnK

n

Diego Ascarza (RIEF) Numerical Methods 26 / 28

Algorithm

1 Propose a initial vector of parameters (α0, α1, ..., αn).

2 Given Γ, solve the Bellman equation of the consumer iterating the
value function and obtain the optimal sequence k0, k1, ..., kT .

3 Using the time series k0, k1, ..., kT , run the regression:

kt+1 = a0 + a1kt + a2k
2
t + ...+ ank

n
t

and estimate a vector of parameters (â0, ..., ân)

4 Compare (â0, ..., ân) and (α0, α1, ..., αn). If the distance is greater
than the tolerance criteria, go back to step 2 with the new law of
motion. In other case, the algorithm converges.

Diego Ascarza (RIEF) Numerical Methods 27 / 28

Algorithm

This method will be more accurate with a higher degree of the
polynomial.

Even with n large, the convergence is not guaranteed.

Diego Ascarza (RIEF) Numerical Methods 28 / 28

	Introduction
	Introduction
	Newton Raphson
	Newton Raphson
	Algorithm
	Algorithm
	Norms
	Be careful
	Secant Method
	Secant Method
	Secant Method
	Solving the Social Planner's Problem
	Solving the Social Planner's Problem
	Solving the Social Planner's Problem
	Using directly Newton-Raphson
	Using directly Newton-Raphson
	Using directly Newton-Raphson
	Gauss-Seidel
	Summary
	Value Function Iteration
	Value Function Iteration
	Value Function Iteration
	Value Function Iteration
	Value Function Iteration
	Value Function Iteration
	Solving the Recursive Equilibrium Directly
	Algorithm
	Algorithm

