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Introduction

We will study now:

How to solve a non-linear system of equations (Newton-Raphson).

How to calculate numerical derivatives for a function.

How to solve the sequential Social Planner’s problem.

How to implement the value function iteration of the value function
for the same problem.
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Newton Raphson

Let x = (x1, x2, ..., xn) be a vector of n components and
F : Rn → Rn.

Goal: Find a vector x̂ such that F (x̂) = 0.

Let’s denote by x the numerical approximation to the solution of x̂ .

By doing a Taylor Expansion for F around x :

F (x) ≈ F (x) + J(x)(x − x)

where J(x) is the Jacobian matrix of F evaluated at x :

M=


F11(x) F12(x) ... F1n(x)
F21(x) F22(x) ... F2n(x)
.... .... .... ....

Fn1(x) Fn2(x) ... Fnn(x)


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Newton Raphson

Taylor’s Theorem: If the approximator x is close enough to the
solution x̂ :

F (x̂) ≈ F (x) + J(x)(x̂ − x)

Then:

x̂ ≈ x − J(x)−1F (x)

This is the mathematical foundation of Newton-Raphson’s method.
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Algorithm

1 Propose a initial solution x0, using as much information you have
about F and initialize s = 0.

2 Calculate the vector F (x s) and the matrix J(x s).

3 Calculate x s+1 using the rule:

x s+1 = x s − J(x s)−1F (x s)

4 Evaluate the distance || x s+1 − x s ||. If the distance is greater than
the tolerance criteria, go back to step 2 with s = s + 1. Otherwise,
finish with x = x s+1.
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Norms

There are different ways to measure the distance between two vectors
of dimension n:

1 Euclidean norm:

|| x − y ||=
[
(x1 − y1)2 + ...+ (xn − yn)2

]0,5
Sup. norm:

|| x − y ||= max {| x1 − y1 |, ..., | xn − yn |}
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Be careful

If x0 starts close enough to x̂ , we can show that Newton-Raphson
converges to x̂ .

But, if x0 is not close enough to x̂ , the method can:
1 Converge to a different solution (if the solution is not unique), or

2 Diverge, i.e., the distance || x s+1 − x s || grows with each iteration.

We need to try different values for x0 before we achieve a definite
answer.

Another disadvantage of Newton Raphson is that it requires analytical
expressions for all the partial derivatives of F.
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Secant Method

The secant method is similar to Newton-Raphson, but it uses
numerical derivatives.

Let’s write the Jacobian matrix as follows:

J(x) = [J1(x), J2(x), ..., Jn(x)]

where Ji (x) is a column vector with the n partial derivatives of F
respect to xi .

Problem: Find a numerical approximation for each Ji (x).

Let h be a column vector of n components (steps).
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Secant Method

If the elements of h are small enough, we can use a Taylor expansion:

F (x1 + h1, x2, ..., xn) ≈ F (x) + J1(x)h1

F (x1, x2 + h2, ..., xn) ≈ F (x) + J2(x)h2

....................................................

F (x1, x2, ..., xn + hn) ≈ F (x) + Jn(x)hn

from where we obtain, for each i = 1, ..., n

Ji (x) ≈ 1

hi
[F (x1, ..., xi + hi , ..., xn)− F (x)]
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Secant Method

An alternative is to approximate the Jacobian matrix from the left:

Ji (x) ≈ 1

hi
[F (x)− F (x1, ..., xi − hi , ..., xn)]

It is recommendable to take an average of both:

Ji (x) ≈ 1

2hi
[F (x1, ..., xi + hi , ..., xn)− F (x1, ..., xi − hi , ..., xn)]

Unless there is a discontinuity of F at x.

The choice of h is arbitrary. It is recommendable to try also with values
progressively lower until the numerical value of the derivative is stable.
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Solving the Social Planner’s Problem

Solving the deterministic problem of the Social Planner’s, we obtain a
system of equations in difference of first order:

u′(ct
βu′(ct+1)

= f ′(kt+1) + (1− δ)

ct = f (kt)− kt+1 + (1− δ)kt

we can write this in general terms as:

ΨK (kt , kt+1, ct , ct+1) = 0

ΨC (kt , kt+1, ct , ct+1) = 0
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Solving the Social Planner’s Problem

We can also combine both conditions to obtain:

u′[f (kt)− kt+1 + (1− δ)kt ]

βu′[f (kt+1)− kt+2 + (1− δ)kt+1]
= f ′(kt+1) + (1− δ)

A equation of differences of second order that we can write as:

Ψ(kt , kt+1, kt+2) = 0

Finally, we know that kt converges monotonically to its steady state
value:

k∗ = (f ′)−1
[

1

β
− (1− δ)

]
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Solving the Social Planner’s Problem

Problem: Given the functional forms for u, f, and the value for the
parameters β and δ,

1 Find sequences of values for kt , ct that solve the system of equations
in differences ΨK = 0, ΨC = 0 or

2 Find a sequence of values for kt that solve the equation in differences
Ψ(.) = 0

... with initial condition k0 > 0 and final ĺımt→∞ kt = k∗
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Using directly Newton-Raphson

Assuming that the model reaches the steady state in a finite number of
periods (T). The approximated solution must satisfy the system of
equations:

ΨK (k0, k1, c0, c1) = 0

ΨC (k0, k1, c0, c1) = 0

ΨK (k1, k2, c1, c2) = 0

ΨC (k1, k2, c1, c2) = 0

...........

ΨK (kT−1, kT , cT−1, cT ) = 0

ΨC (kT−1, kT , cT−1, cT ) = 0

with 2T equations and 2(T + 1) unknowns (including k0,c0,kT and cT )
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Using directly Newton-Raphson

The first missing equation is k0 = ... (whatever it is its initial value).

The other missing equation can be k∗T or kT = kT−1.

We can the solve the system of equations using the Newton-Raphson
method (or the secant method).

There are so many equations (T is at least 100), but it usually works.

We need to propose initial sequences for k00 , ....k0T and c00 ,...,cT0 . For
example, a straight line between k0 and kT = k∗.
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Using directly Newton-Raphson

The method can also be applied to the equation in differences of
second order in k:

Ψ(k0, k1, k2) = 0

Ψ(k1, k2, k3) = 0

.........

Ψ(kT−2, kT−1, kT ) = 0

This time we have T − 1 equations and T + 1 unknowns, the missing
equations are k0 = ... and some terminal condition kT = k∗ or
kT = kT−1.

An algorithm for this problem that does not require to solve so many
equations simultaneously is the one of Gauss-Seidel.
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Gauss-Seidel

The algorithm is the following:

Propose an initial sequence k02 , ..., k
0
T−1 and initialize s = 0. For

example, a straight line between k0 and kT = k∗.

Given k0 and ks2 , find ks+1
1 by solving:

Ψ(k0, k
s+1
1 , k2) = 0

using Newton-Raphson or other method.

Find ks+1
2 , ..., ks+1

T−1 solving and iterating:

Ψ(ks+1
1 , ks+1

2 , ks3) = 0

...........

Ψ(ks+1
T−2, k

s+1
T−1, k

∗) = 0

Calculate || (ks+1
2 , ..., ks+1

T−1)− (ks2 , ..., k
s
T−1) ||. If the distance is

greater than the tolerance criteria then go back to the second step
with s = s + 1. Otherwise stop with kt = ks+1

t .
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Summary

With any of these methods, once we find a sequence for kt we can
easily calculate sequences for ct , Yt , wt , rt and any other variable of
interest:

Yt = f (kt)

it = kt+1 − (1− δ)kt

ct = Yt − it

Kt = kt

rt = f ′(Kt)

wt = f (Kt)− f ′(Kt)Kt
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Value Function Iteration

Using dynamic programming and the contraction mapping theorem,
departing from any function v0 (for example v0 = 0, the sequence vn

defined by:

vn+1(k) = maxk ′
{
u[f (k) + (1− δ)k − k ′] + βvn(k ′)

}
s.t.

k ′ ∈ [0, f (k) + (1− δ)k]

converges to the solution of the social planner v, when n→∞. Let’s
see how to implement numerically this method to approximate the
value function v.
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Value Function Iteration

Initial setting:

Define a grid of capital for k, this is a vector:

K = (K1,K2, ...,Kp)

with K1 = kmin and Kp = kmax . For simplicity we can use points that
are equally distanced:

K2 = kmin + η K3 = kmin + 2η, etc

with η =
Kp−K1

p−1
If p is bigger (a broader grid), the approximation is more accurate but the
algorithm is slower.
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Value Function Iteration

Define the matrix M as:

M =


F (K1,K1) F (K1,K2) .... F (K1,Kp)
F (K2,K1) F (K2,K2) .... F (K2,Kp)

.... .... .... ....
F (Kp,K1) F (Kp,K2) .... F (Kp,Kp)


M saves any possible value for F (k , k ′) for each possible combination
(k , k ′) in our grid.

Eliminate all the entries that are not feasible by doing:

Mij = −1000000 if Kj > f (Ki ) + (1− δ)Ki
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Value Function Iteration

Propose an initial column vector V 0 ∈ Rp an initialize s = 0 (for
example, propose V 0 = 0.

Given V s and M, calculate V s+1 as:

V s+1 = max
{
M + β(V sxe)T

}
where T denotes the transpose of a matrix, e = [1, 1, 1..., 1] is a row
vector of size p with ones. The max is calculated row by row.

Compute || V s+1 − V s ||. If the distance is greater than the tolerance
criteria, go back to step 2 with s = s + 1. If the tolerance criteria is
satisfied, finish with V = V s+1.
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Value Function Iteration

The result will be an approximation to the value function in each entry of
the grid:

V =


V (K1)
V (K2)
...

V (Kp)

 =


v(K1)
v(K2)
...

v(Kp)


The algorithm stores the optimal decision rule G as well:

G = argmax
{
M + β(Vxe)T

}
G is a column vector of n components, where Gi ∈ {1, ..., p} indicates
the number of the column that maximizes the row i.
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Value Function Iteration

Therefore, departing from any k0 = Ki , we can recover the optimal
sequence for capital:

k1 = Kj with j = Gj

k2 = Kl with l = Gj

..........
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Solving the Recursive Equilibrium Directly

The value function iteration is not ideal to solve directly the recursive
competitive equilibrium since it requires:

Two state variables (individual capital and aggregate capital) (not
that important).

The law of motion Γ is an unknown object when the consumer
decides to solve her Bellman equation.

We will have to follow then an algorithm of double iteration.

We suppose that the law of motion follows a polynomial of degree n:

K ′ = Γ(K ) = α0 + α1K + α2K
2 + ...+ αnK

n
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Algorithm

1 Propose a initial vector of parameters (α0, α1, ..., αn).

2 Given Γ, solve the Bellman equation of the consumer iterating the
value function and obtain the optimal sequence k0, k1, ..., kT .

3 Using the time series k0, k1, ..., kT , run the regression:

kt+1 = a0 + a1kt + a2k
2
t + ...+ ank

n
t

and estimate a vector of parameters (â0, ..., ân)

4 Compare (â0, ..., ân) and (α0, α1, ..., αn). If the distance is greater
than the tolerance criteria, go back to step 2 with the new law of
motion. In other case, the algorithm converges.
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Algorithm

This method will be more accurate with a higher degree of the
polynomial.

Even with n large, the convergence is not guaranteed.
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