Introduction to Real Analysis

Diego Ascarza

Lambda Group

Introduction

- In this course we are going to learn new methods to solve general equilibrium models.
- These methods will allow us to solve more complex model in a compact and 'easy' way.
- However, to understand these methods we need some mathematical definitions and tools.
- The purpose of this class is showing you some of these notions and tools. Read Chapter 3 of SLP for more details.

Basic Definitions

- **Metric Space:** It is a set \mathbb{S} together with a metric (a notion of distance) $\rho: \mathbb{S}x\mathbb{S} \to \mathbb{R}$, such that $\forall x, y, z \in \mathbb{S}$:
 - **1** $\rho(x,y) \ge 0$, with equality iff x = y
 - **2** $\rho(x, y) = \rho(y, x) y$

Basic Definitions

- Normed Vector Space: It is a vector space \mathbb{S} , together with a norm $\|.\|:\mathbb{S}\to\mathbb{R}$, such that $\forall~x,y\in\mathcal{S}~y~\alpha\in\mathbb{R}$:
 - ① $||x|| \ge 0$, with equality iff x = 0
 - **2** $\|\alpha x\| = |\alpha| \|x\|$, y

Basic Definitions

Definition: A sequence $\{x_n\}_{n=0}^{\infty}$ in \mathbb{S} converges to $x \in \mathbb{S}$, if:

$$\forall \epsilon > 0, \exists N_{\epsilon} \text{ such that: } \rho(x_n, x) < \epsilon, \forall n \geq N_{\epsilon}$$

Definition: A sequence $\{x_n\}_{n=0}^{\infty}$ in \mathbb{S} is a **Cauchy's sequence** if:

$$\forall \epsilon > 0, \exists N_{\epsilon} \text{ such that: } \rho(x_n, x_m) < \epsilon, \forall n, m \ge N_{\epsilon}$$

Definition: A metric space (\mathbb{S}, ρ) is **complete** if every Cauchy's sequence in \mathbb{S} converges to an element in \mathbb{S} .

An example of this is the set of real numbers with $\rho(x,y) = |x-y|$

Theorem 1

Theorem

Let $X \subseteq \mathbb{R}$, and let C(X) be the set of continuous and bounded functions $f: X \to \mathbb{R}$ with the sup norm, $||f|| = \sup_{x \in X} |f(x)|$. Then C(X) is a complete norm vector space.

The Contraction Mapping Theorem

Definition: Let (\mathbb{S}, ρ) a metric space and $T : \mathbb{S} \to S$ a function that maps S with itself. We say that T is a **contraction** with modulus β if for some $\beta \in (0,1)$, $\rho(Tx, Ty) \leq \beta \rho(x,y)$, $\forall x,y \in \mathbb{S}$.

The Contraction Mapping Theorem

Theorem

If (\mathbb{S}, ρ) is a complete metric space and $T : \mathbb{S} \to \mathbb{S}$ is a contraction with modulus β , then:

- T has exactly a fixed point v in S, and
- ② for any $v_0 \in \mathbb{S}$, $\rho(T^n v_0, v) \leq \beta^n \rho(v_0, v)$, n = 0, 1, 2, ...

The Contraction Mapping Theorem - Corollary 1

Theorem

Let (\mathbb{S}, ρ) be a complete metric space and $T : \mathbb{S} \to \mathbb{S}$ a contraction with a fixed point $v \in \mathbb{S}$. If \mathbb{S}' is a closed subset of \mathbb{S} and $T(\mathbb{S}') \subseteq \mathbb{S}'$, then $v \in \mathbb{S}'$. If additionally $T(\mathbb{S}') \subseteq \mathbb{S}''$, then we have that $v = Tv \in \mathbb{S}''$

The Contraction Mapping Theorem - Corollary 2

Theorem

Let (\mathbb{S}, ρ) be a complete metric space and $T : \mathbb{S} \to \mathbb{S}$. Suppose that for some integer $N, T^N : \mathbb{S} \to \mathbb{S}$ is a contraction with modulus β . Then:

- T has exactly a fixed point in S, and
- for any $v_0 \in \mathbb{S}$, $\rho(T^{kN}v_0, v) \leq \beta^k \rho(v_0, v)$, k = 0, 1, 2, ...

Blackwell's sufficient conditions

Theorem

Let $X \subseteq \mathbb{R}^I$, and let B(X) be a space of bounded functions $f: X \to \mathbb{R}$, with the sup norm. Let $T: B(X) \to B(X)$ be an operator satisfying:

- (monotonicity) $f, g \in B(X)$ and $f(x) \le g(x)$, $\forall x \in X$, implies $(Tf)(x) \le (Tg)(x), \forall x \in X$;
- (discounting) \exists some $\beta \in (0,1)$ such that:

$$[T(f+a)](x) \le (Tf)(x) + \beta a, \forall f \in B(X), a \ge 0, x \in X$$

Here (f + a)(x) is the function defined by (f + a)(x) = f(x) + a. Then T is a contraction with modulus β .

The Theorem of the Maximum - Correspondences

- Our final goal is to analyze dynamic programming problems. Let x be the beginning-of-period state variable, an element $X \subseteq \mathbb{R}^I$, and $y \in X$ is the end-of-period state to be chosen.
- We will describe a correspondence from a set X into a set Y as a relation that assigns a set $\Gamma(x) \subseteq Y$ to each $x \subseteq X$ (we will be interested in the case Y = X).

The Theorem of the Maximum - Correspondences

Definition: A correspondence $\Gamma: X \to Y$ is lower hemi-continuous (lhc) at x if $\Gamma(x)$ is nonempty and if, for every $y \in \Gamma(x)$ and every sequence $x_n \to x$, there exists $N \ge 1$ and a sequence $\{y_n\}_{n=N}^{\infty}$ such that $y_n \to y$ and $y_n \in \Gamma(x_n), \ \forall n \ge N$.

Definition: A correspondence $\Gamma: X \to Y$ is upper hemi-continuous (uhc) at x if $\Gamma(x)$ is nonempty and if, for every sequence $x_n \to x$ and every sequence $\{y_n\}$ such that $y_n \in \Gamma(x_n)$, all n, there exists a convergent subsequence of y_n whose limit point y is in $\Gamma(x)$.

Definition: A correspondence : $X \to Y$ is **continuous** at $x \in X$ if it is both uhc and lhc at x.

The Theorem of the Maximum

Theorem

Let $X \subseteq \mathbb{R}^I$, and $Y \subseteq \mathbb{R}^m$, let $f: XxY \to \mathbb{R}$ be a continuous function, and let: $\Gamma: X \to Y$ be a compact-valued and continuous correspondence. Then the function $h: X \to \mathbb{R}$ is continuous and the correspondence $G: X \to Y$ defined in (2) is nonempty, compact-valued, and uhc.

Here (f + a)(x) is the function defined by (f + a)(x) = f(x) + a. Then T is a contraction with modulus β .