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Introduction

General Equilibrium model with two types of agents:
1 Large number of infinitely lived identical households (representative

household).

2 Large number of identical firms that produce a single good
(representative firm).
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Households

Representative household of size Lt :

Preferences: intertemporal utility function:

U =
∞∑
t=0

βtu(Ct/Lt)

u satisfies u′ > 0 y u′′ < 0 y

ĺım
c→0

u′(c) =∞

Endowments: Labor and capital (rented to firms).
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Budget Constraint

Households face the following budget constraint:

Ct + It = wtLt + rtKt + Πt

Price of consumption good normalized to 1, ∀t.

Capital follows a law of motion:

Kt+1 = (1− δ)Kt + It

Number of workers grow at a rate η:

Lt+1 = (1 + η)Lt
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Technology

Aggregate production function.

Yt = F (Kt , Lt)

Technology satisfies (i) constant returns to scale, (ii) concavity y (iii)
Inada conditions.

Objective function: Profits:

Πt = Yt − wtLt − rtKt
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Model in intensive units

(variables ct , it ,Kt , yt expressed in units of the unique good per
worker)

u

(
Ct

Lt

)
= u(ct)

Kt+1

Lt
= (1 + η)kt+1

yt =
Yt

Lt
= F (

Kt

Lt
,1) = f (kt)

with f ′ > 0 y f ′′ > 0 y

ĺım
k→0

f ′(k) =∞ ĺım
k→∞

f ′(k) = 0
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Competitive Equilibrium

A competitive equilibrium is a set of sequences for the sequences
ct , it , yt y kt+1 and prices wtyrt such that:

Given k0 > 0. wt y rt , the quantities {ct . it y kt+1}∞t=0 solve the
problem of the representative household:

max
∞∑
t=0

βtu(ct)

s.a.

ct + it = wt + rtkt ∀t

(1 + η)kt+1 = (1− δ)kt + it ∀t

ct , it ≥ 0
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Competitive Equilibrium

In each period t, given wt and rt , the quantities yt y kt solve the
problem of the representative firm:

max yt − wt − rtkt

yt = f (kt)

and profits are equal to zero.

yt = wt + rtkt + wt

In each period, markets clear:

yt = ct + it

Including the input markets!
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Social Planner’s Problem

Given k0 > 0, a benevolent Social Planner solves:

Max
∞∑
t=0

βtu(ct)

s.a.

ct + it = f (kt) ∀t

(1 + η)kt+1 = (1− δ)kt + it∀t

ct , it ≥ 0

The sequences ct , it y kt+1 that result from this optimization are
Pareto efficient.
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Welfare Theorems

Without distortions, such as taxes or externalities:

1 A competitive equilibrium is Pareto efficient (first welfare theorem).

2 For each Pareto efficient allocation, there exists a price system such
that the allocation and such prices constitute a competitive equilibrium
(second welfare theorem).

Strategy: Characterize the CE and find the prices such that it is
consistent with Planner’s problem.
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First Order Conditions

Lagrangean of Social Planner’s problem:

L =
∞∑
t=0

[βtu(ct)− λ1.t(ct + it − f (kt))−

λ2,t((1 + η)kt+1 − (1− δ)kt − it)]

Why can we omit the non-negativity conditions?
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First Order Conditions

Maximizing with respect to L, we obtain the FOCs:

Plus the transversality condition:

limt→∞

(
λ2,t
λ2,0

kt+1

)
= 0

where λ2,t represents the shadow price of a unit of capital.

Using the first-order conditions, we can rewrite the transversality
condition as:

ĺım
t→∞

βt
(
u′(ct
u′(c0

)
kt+1 = 0
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First Order Conditions

Doing some algebra:

Ecuación de Euler:

u′(ct)

βu′(ct+1)
=

f ′(kt+1) + (1− δ)

1 + η

Transversality condition:

ct = f (kt)− (1 + η)kt+1 + (1− δ)kt

Consumption is equal to the final output minus investment.
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Characterization

Nonlinear system of two first-order difference equations in ct and kt ,
initial condition k0 and transversality condition.

Prices are obtained from the firm’s problem:

max f (kt)− wt − rtkt

from where:
rt = f ′(kt)

wt = f (kt)− f ′(kt)kt

The optimal paths for ct y kt , together with these prices, constitute a
CE.
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CE and SP equivalence

To verify that we indeed have a CE, we characterize the solution of
the representative household:

L =
∞∑
t=0

[βtu(ct)− λ1.t(ct + it − wt − rtkt)−

λ2,t((1 + η)kt+1 − (1− δ)kt − it)]

From the first-order conditions and the transversality condition we
have:

Euler’s equation:

u′(ct)

βu′(ct+1)
=

rt+1 + (1− δ)

1 + η

and the Feasibility constraint:

ct = wt + [rt + (1− δ)]kt − (1 + η)kt+1
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CE and SP equivalence

Using the prices that come from the firm’s problem:

rt = f ′(kt) wt + rtkt = f (kt)

Therefore, the CE and the SP are equivalent.
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Steady State

A steady state is a CE in which all quantities per worker are constant
over time:

ct+1 = ct = c∗

kt+1 = kt = k∗

Therefore, the quantities in levels Ct y Kt grow at a rate η

From the Euler’s equation:

f ′(k∗) =
1 + η

β
− (1− δ)

Therefore, there exists a unique level for capital in steady state k∗
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Extensions: endogenous labor supply

So far, we assumed a perfectly inelastic labor supply.

Now, we will make labor supply to be endogenous by adding a
consumption-leisure decision.

We will focus on the intensive margin of labor supply decisions.
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Extensions: endogenous labor supply

Consider the intertemporal utility:

U =
∞∑
t=0

βtu

(
Ct

Lt
,
Lt − Lst

Lt

)
Lst : denotes the household labor supply.

Assume: u1 > 0, u2 > 0, u11 < 0, u22 < 0 y u21 > 0
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Extensions: endogenous labor supply

In intensive form, we divide all the variables by Lt :

1 Intratemporal utility function:

u(ct , 1− lt) (1)

2 Budget constraint:
ct + it = wt lt + rtkt

3 Production function:

yt =
Yt

Lt
= F

(
Kt

Lt
,
Lst
Lt

)
= F (kt , lt)
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Extensions: endogenous labor supply

A CE is a set of sequences for the quantities ct , lt , it , yt y kt+1 and
prices wt y rt such that:

1 i) Given k0 > 0, wt y rt , the sequences ct , lt , itykt+1 solve the
household’s problem:

max
∞∑
t=0

βtu(ct , 1− lt)

s.a

ct + it = wt lt + rtkt

(1 + η)kt+1 = (1− δ)kt + it

ct , it ≥ 0

0 ≤ lt ≤ 1
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Extensions: endogenous labor supply

1 ii) In each period t, given wt and rt , the quantities yt , kt y lt solve the
firm’s representative problem.

2 iii) In each period t, markets clear:

yt = ct + it

max yt − wt lt − rtkt

s.t

yt = F (kt , lt)
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Extensions: endogenous labor supply

Social Planner’s Problem:

max
∞∑
t=0

βtu(ct , 1− lt)

s.t

ct + it = F (kt , 1− lt)

(1 + η)kt+1 = (1− δ)kt + it

With Lagrangean:

L=
∑∞

t=0[βtu(ct , 1− lt)− λ1.t(ct + it − F (kt , lt)−

λ2,t((1 + η)kt+1 − (1− δ)kt − it)]
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Extensions: endogenous labor supply

First order conditions:

∂L

∂ct
= βtu1(ct , 1− lt)− λ1,t = 0

∂L

∂lt
= −βtu2(ct , 1− lt) + λ1,tFl(kt , lt) = 0

−λ1,t + λ2,t = 0

∂L

∂kt+1
= λt+1FK (kt+1, lt+1)− λ2,t(1 + η) +2,t+1 (1− δ) = 0

Plus the usual transversality condition.
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Extensions: endogenous labor supply

Combining these conditions, we obtain the Euler Equation:

u1(ct , lt
βu1(ct+1, 1− lt+1)

=
FK (kt+1, lt+1) + (1− δ)

1 + η

the feasibility constraint:

ct = F (kt , lt)− (1 + η)kt+1 + (1− δ)kt

and an additional static relationship:

u1(ct , 1− lt) =
u2(ct , 1− lt)

FL(kt , lt)

This implicitly defines a labor supply function that depends positively
on the wage rate.
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Extensions: endogenous labor supply

The steady state is characterized by the system:

1

β
=

FK (k∗, l∗) + (1− δ)

1 + η

c∗ = F (k∗, l∗)− (n + δ)k∗

u1(c∗, 1− l∗) =
u2(c∗, 1− l∗)

FL(k∗, l∗)

We can solve for c∗, k∗ y l∗
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Extensions: Exogenous growth and technical change

Steady state: output per worker is constant. In the basic model, there
is no long-run growth.

We now introduce exogenous technical change that affects labor
productivity.

The production function is:

F (Kt ,AtLt)

At+1 = (1 + g)At

At denotes technology level (A0 = 1) and g is the exogenous rate of
technical progress.
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Extensions: Exogenous growth and technical change

Divide all the quantities by AtLt so everything is expressed in
efficiency units of labor.

ĉt =
Ct

AtLt
=

ct
At

Production function:

ŷt = F (
Kt

AtLt
, 1) = f (k̂t)

Budget constraint:

ĉt + ît = ŵt + rt k̂t , con ŵt =
wt

At

Capital law of motion:

(1 + g)(1 + η) ˆkt+1 = (1− δ)k̂t + ît
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Extensions: Exogenous growth and technical change

We also need to transform the utility function into efficiency units.
For example:

u(ct) =
c1−σt

1− σ
Then:

∞∑
t=0

βtu(ct) =
∞∑
t=0

βt
c1−σt

1− σ
=
∞∑
t=0

βtA1−σ
t

ĉ1−σt

1− σ

=
∞∑
t=0

β̂tu(ĉt)

where β̂ = β(1 + g)1−σ
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Extensions: Exogenous growth and technical change

We have redefined variables such as their structure is similar to the
baseline model. Therefore, the definition of CE and the FOCs are the
same:

u′(ĉt)

β̂u′( ˆct+1)
=

f ′(k̂t+1) + (1− δ)

(1 + η)(1 + g)

Feasibility constraint:

ĉt = f (k̂t)− (1 + η)(1 + g)k̂t+1 + (1− δ)k̂t

In the long run, the economy converges to a steady state, where k̂t y
ĉt are constant.
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Extensions: Exogenous growth and technical change

In contrast with the baseline model, the quantities per worker grow at
the same and at a constant rate g in the steady state (balanced
growth path).

This model features long-run growth but an exogenous rate
independent of other parameters.
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Extensions: Exogenous growth and technical change

By construction, the balanced growth path of this model is consistent
with Kaldor’s stylized facts (1961):

1 The growth rate of output per worker is constant and positive.

2 The saving rate is constant (investment/output ratio).

3 The real interest rate is constant.

4 The share of each factor in national income is constant.

These regularities correspond to advanced economies such as the
United States.
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