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1 Static Ramsey Taxation

In this first chapter, we cover the notion of what Ramsey Taxation means, first in a static environment. The intuitive

idea behind Ramsey Taxation is solving a Planner’s Problem conditional on a feasibility condition and also an

additional one which indicates that we choose from a choice set that characterizes a competitive equilibrium (raising

enough revenue from a set of available instruments). In general, solving a Ramsey problem involves the following steps:

1. Identify what is the objective function of the tax designer.

2. Identify what are the available instruments for the tax designer.

3. Mapping between the setting of instruments in step 2. and the planner utility in 1.

1.1 Environment

Consider an economy in which n consumption goods are produced using labor:

F (c1 + g1, ..., cn + gn, l) = 0

Notice that I am implicitly assuming that both goods consumed by individuals (ci) and the government (gi) are

produced using the same technology. F is assumed to be CRS. Individuals solve the following maximization problem:

Max
c1,...,cn,l

U(c1, ..., cn, l)

s.t.
n∑
i=1

pi(1 + τi)ci = l

∗To prepare these notes, I have benefited from: V.V. Chari and Larry Jones 2nd year lecture notes, and from Roozbeh Hosseini notes on

Public Economics. These notes are preliminary and may contain errors.
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τi denotes the tax that is levied on good i. Regarding firms, there is a representative firm that produces goods using

technology F:

Max
x1,...,xn,l

n∑
i=1

pixi − l

s.t.

F (x1, ..., xn, l) = 0

Government finance its purchases through taxes:

n∑
i=1

pigi =
n∑
i=1

piτici

1.2 Competitive Equilibrium

Given the tax system, a competitive equilibrium in this environment is an allocation together with a price system such

that:

• Given policy π ≡ (τ1, ..., τn) and prices p ≡ (p1, ..., pn), (c, l) solves consumer’s problem.

• Given prices p, xi solves the problem of representative firm.

• Government budget holds.

• Markets clear:

ci + gi = xi ∀i

Proposition 1 Any competitive equilibrium allocations must satisfy the feasibility condition:

F (c1 + g1, ..., cn + gn) = 0 (1)

and an implementability constraint:
n∑
i=1

Uici + Ull = 0 (2)

Furthermore, any allocation that satisfy the two equations above can be supported as a competitive equilibrium for

appropriately constructed policies and prices.

Proof:

Suppose (c, x, l) is an allocation such that it constitutes part of a Competitive Equilibrium. Then, the following FOC

must be satisfied:
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Ul = − Ui
pi(1 + τi)

∀i

Then replacing this in the budget constraint of the individual (getting rid of the prices and taxes), we obtain the

implementability constraint.

Now let’s assume that we have an allocation that satisfies both the implementability and the feasibility constraint.

Then, build prices as:

pi = −Fi
Fl

∀i

1 + τi =
Ui
Ul

Fl
Fi

∀i

It is easy to check that indeed the allocation together with this price system, constitute a competitive equilibrium.

1.3 Ramsey Problem

The question we try to answer is how taxes should be. In other words, we look for a tax system that is able to

maximize the welfare of individuals subject to having some tax instruments that are able to raise enough revenue with

a resulting allocation that constitutes a competitive equilibrium.

This can also be seen as a game: First, the government sets a policy and then the consumers decide how much to

consume and work given the government policy. We aim to find the equilibrium of such a game. Suppose that the set

of feasible policies for the government is Π:

Definition 1 (Ramsey equilibrium) A Ramsey equilibrium is a policy π = (τ1, ..., τn) ∈ Π, allocation rules c(.),

x(.) and l(.) and price function p(.) such that:

π ∈ argmax
π′∈Π

U(c(π′), l(π′))

s.t.
n∑
i=1

pigi =

n∑
i=1

piτici

and (c(π′), x(π′), l(π′)) together with p(π′) is a competitive equilibrium for every π′ ∈ Π. If the allocation and the price

constitute a Ramsey equilibrium, then we call (c(π), x(π), l(π)) a Ramsey allocation.

Proposition 2 Suppose c∗ and l∗ are part of a Ramsey allocation. Then:

(c∗, l∗) ∈ argmax
c,l

U(c, l)

s.t.
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n∑
i=1

Uici + Ull = 0

F (c1 + g1, ..., cn + gn, l) = 0

Proof:

If (c∗, l∗) constitute a Ramsey allocation, then, there is a price p(π∗) such that the allocation and that price is a

competitive equilibrium. If that is the case, then it is going to satisfy the government budget-balance condition.If it is

a competitive equilibrium, it satisfies feasibility and implementability (by Proposition 1). Now, notice also that if an

allocation solves the problem in proposition two, then we can build a price such that the resulting allocation together

with the price is a competitive equilibrium (and therefore satisfies the government budget-balance condition).

Therefore, both problems are equivalent. In other words, both problems maximize utility with a choice set equal to

the allocations that are part of a competitive equilibrium for some price system. Q.E.D.

1.4 Elasticities and Optimal Taxes

Let’s assume there are only 2 goods. Ramsey problem in this case is:

Max
c1,c2,l

U(c1, c2, l)

s.t.

U1c1 + U2c2 + Ull = 0

F (c1 + g1, c2 + g2, l) = 0

Suppose λ and η are the Lagrange Multiplieres for the implementability and the feasibility condition, respectively.

Then:

Ui + λ(Ui + U1ici + U2ic2 + Ulil) = ηFi

∀i

Ul + λ(Ul + lUll + U1lc1 + U2lc2) = ηFl

Now define:

Ψi = −U1ic1 + U2ic2 + Ulil

Ui
Ψl = −U1ic1 + U2ic2 + Ulll

Ul
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From these we have:

ηFi
Ui

= 1 + λ− λΨi
ηFl
Ul

= 1 + λ− λΨl

From the individual problem we had:

1 + τi =
Ui
Ul

Fl
Fi

Matching this with the Ramsey problem:

1 + τi =
1 + λ− λΨl

1 + λ− λΨi

and this means that if Ψi > Ψj then you tax more good i than good j. However, Ψ does not tell us that much per se.

To understand clearly what is going on, let’s go through some special cases of U.

1.4.1 Additive separable utility functions

Let’s assume that U has the following functional form:

U(c1, c2, l) = u1(c1) + u2(c2)− v(l)

Then:

Ψi = −Uiici
Ui

Now I will show that there is a relationship between Ψi and the income-elasticity of good i ∀i. To do this, suppose

there is a non-wage income m, such that p1c1 + p2c2 = l +m. Taking FOC (ignoring the tax part) we have:

Ui(ci(p,m)) = piφ(p,m)

where φ(p,m) is the Lagrange Multiplier on the budget constraint. Deriving w.r.t. m we have:

Uii
∂ci
∂m

= pi
∂φ

∂m
=
Ui
φ

∂φ

∂m

and Rearranging:

Uiici
Ui

m

ci

∂ci
∂m

=
m

φ

∂φ

∂m

Define ηi as:

ηi =
m

ci

∂ci
∂m

Then:
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Ψi = −m
φ

∂φ

∂m

1

ni

Therefore: Hi > Hj ⇐⇒ ηi > ηj . This means needs should be more taxed than luxury goods.

Result 1 If preferences are additive separable, necessities should be taxed more than luxuries.

1.4.2 Quasi-linear utility function

Suppose now preferences are as in the previous section but now it has the following peculiarity:

v(l) = l

Then, these preferences don’t have income effect and therefore using income elasticities to base our analysis is not the

most appropriate thing to do anymore. Instead, we use now price elasticities. Again, taking FOC we have:

Ui(ci) = piφ

and deriving w.r.t. pi:

Uii
∂ci
∂pi

= φ =
Ui(ci)

pi

Then:

Uii
∂ci
∂pi

pi
ci

=
Ui(ci)

ci

Therefore:

Ψi =
1

εi

Therefore, you tax more the less elastic goods.

Result 2 If preferences are additive-separable and quasi-linear, price-inelastic goods should be taxed more.

1.5 Uniform Commodity Taxation

This is one of the most useful and powerful results from Ramsey taxation. Let’s see why. First, suppose that

preferences are weakly separable in consumption and leisure:

U(c1, ..., cn, l) = W (G(c1, ..., cn), l) (3)

let’s assume also that G(.) is homothetic.
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Proposition 3 Suppose that preferences satisfy (3). Then, it is optimal to tax all the goods at the same rate:

τi = τj ∀i, j.

Proof:

Homotheticity of G(.) implies:

Ui(αc, l)

Uj(αc, l)
=

Ui(c, l)

Uj(α, l)

which means:

Ui(αc, l) = Uj(αc, l)
Ui(c, l)

Uj(c, l)

Taking derivative with respect to α and setting α = 1 we obtain:

∑n
k=1 Uikck
Ui

=

∑n
k=1 Ujkck
Uj

also notice that:

Ul = Wl, Uli = WlgGi Ui = WgGi

Therefore:

Ψi =
−
∑n

k=1 Uikck
Ui

− Uill

Ui
=
−
∑n

k=1 Uikck
Ui

−
WlgGil

WgGi

=
−
∑n

k=1 Uikck
Ui

−
Wlgl

Wg
= Hj

Q.E.D.

1.6 Intermediate goods taxation

Another important result from static Ramsey taxation is that intermediate goods shall not be taxed. To formalize the

idea, suppose there are 2 sectors: One sector produces commodity x1 that is consumed both by the households c1 and

by the government g1. To produce commodity 1, firms need to combine an intermediate good z and labor l1 according

to the following production function:

f(x1, z, l1) = 0,

The other sector, uses labor l2 as input to produce x2 that can be used as an input in production of good x1 (z) or it

can be consumed (c2, g2). This is done with the following technology:
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h(x2, l2) = 0,

What is the problem that households solve?

Max
c,l

U(c1, c2, l)

s.t.

p1(1 + τ1)c1 + p2(1 + τ2)c2 ≤ l1 + l2

Producer of good 1 solves:

Max
x1,z,l1

p1x1 − l1 − p2(1 + τz)z

s.t.

f(x1, z, l1) = 0,

The FOC from this problem is:

λ1fl = 1

p2(1 + τz) = λ1fz

Then:

fz
fl

= p2(1 + τz)

Then:

fz
fl

= p2(1 + τz)

Producer of the good 2 solves:

Max
x,l2

p2x2 − l2

s.t.

h(x2, l2) = 0

The following condition characterizes this firm’s problem:

p2 = λ2hx2

−1 = λ2hl
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Therefore:

hx
hl

= −p2

Combining the conditions of both sectors:

fz
fl

= −hx
hl

(1 + τz)

The government budget constraint is:

τzz + τ1c1 + τ2c2 = p1g1 + p2g2

Feasibility implies:

c1 + g1 = x1

c2 + g2 + z = x2

f(x1, l1, z) = 0

h(x2, l2) = 0

What is the implementability constraint in this environment?

From the first order conditions of the consumer we have:

Uc1
p1(1 + τ1)

=
Uc2

p2(1 + τ2)
= Ul1+l2

Replacing the prices and taxes to obtain expressions only as a function of the allocation, we obtain the following

implementability constraint:

Uc1c1 + Uc2c2 + Ul(l1 + l2) = 0

Therefore, the Ramsey problem is:

Max
c1,c2,l1+l2

U(c1, c2, l1 + l2)

s.t.

Uc1c1 + Uc2c2 + Ul(l1 + l2) = 0 (λ)

f(c1 + g1, z, l1) = 0, (φ1)

h(c2 + g2 + z, l2) = 0, (φ2)

9



Taking first order condition w.r.t. z:

φ1fz = −φ2hz

Then:

and if we take derivative with respect to labor:

flφ1 = Ul + λ (Ull(l1 + l2) + Ul + Uclc)

hlφ2 = Ul + λ (Ull(l1 + l2) + Ul + Uclc)

Then:

flφ1 = hlφ2

Therefore:
fz
hz

= − f1

h1

Then τz = 0 and not distort production efficiency. The MRT’s are not distorted in the planner’s problem!

Exercise: Give an example where this result does not hold. Hint: Suppose you can’t tax all the consumption goods.

1.7 A last result: Lump sum taxes are awesome but never used...

To illustrate this result, consider an environment with two households: i = 1, 2. Suppose there are J goods and ci,j

denotes consumption of good j of individual i.

Assume endowments are given by labor endowments of ni for i = 1, 2. There is a production function F (n) such that a

feasible allocation satisfies:

∑
i

∑
j

ci,j + g ≤ F (n)

1.7.1 Unconstrained Planner’s Problem

A Social Planner would solve:

Max
cj,i,ni

µu1(c1,1, ..., c1,J ; 1− n1) + (1− µ)u2(c2,1, ..., c2,J ; 1− n2)

s.t.∑
i

∑
j

ci,j + g ≤ F (n1 + n2)

From the First-Order conditions we have:

c1,j : µu1
j = λ
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n1 : µu1
l = λF ′

c2,j : µu2
j = λ

n2 : µu2
l = λF ′

The following equations characterize the solution to this problem:

u1
l

u1
j

= F ′ ∀j

u2
l

u2
j

= F ′ ∀j

∑
i

∑
j

ci,j + g = F (n1 + n2)

µu1
j = (1− µ)u2

j

1.7.2 What is a Tax-Distorted Competitive Equilibrium (TDCE) with Lump Sum Taxes?

A TDCE is:

• Prices and wages: p1, ..., pJ , pg, w.

• Taxes T i(p1c
i
1, ..., pJc

i
J , wn

i) (a very general form for taxes). Lump sum taxes would be

T i(p1c
i
1, ..., pJc

i
J , wn

i) = T i.

• Allocations for households and firms that solve:

Max
ci,j ;1−ni

ui(ci,1, ..., ci,J ; 1− ni)∑
j

pjci,j ≤ wni − T i(p1ci,1, ..., pJci,J , wn
i) + πi (η)

and

Max
cfj ,g

f ,nf

∑
j

pjc
f
j + pgg

f − wnf

s.t.∑
j

cfj + cfg ≤ F (nf )

• Market clearing:

c1,j + c2,j = cfj

g = cfg

n1 + n2 = nf
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T 1 + T 2 = pgg

Assume F has CRS (what does it imply for π′s? The firm’s FOCs imply pj = pj′ = pg for all interior equilibria.

Let’s call this common price p. Also:

pF ′ = w

The Household FOCs are:

ci,j : uij = ηi[p+ pTi,j ] = ηip[1 + Ti,j ],

ni : uil = ηi[w − wT il ] = ηiw[1− T il ]

then:

uil
uij

=
ηiw[1− T il ]
ηip[1− T ij ]

=
F ′[1− T il ]

1 + T ij

1.7.3 Implementation of the Planner’s Problem

From the TDCE we have:

uil
uij

=
ηiw[1− T il ]
ηip[1− T ij ]

=
F ′[1− T il ]

1 + T ij

and from the Planner’s problem we have:

uil
uij

= F ′

Combining these conditions we have that in order to implement Planner’s problem:

1− T il
1 + T ij

= 1

The easiest way to implement this condition is by making T i(p1ci,1, ..., pJci,J , wni) = T i for example.

Exercise: Show that this result still holds if g enters the utility function. Does it still hold if g enters the production

function?
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2 Dynamic Ramsey

For the purposes of this course, we will focus on a deterministic environment. Our main goal will be deriving the

Chamley-Judd result (Chamley (1986), Judd (1985). If you are interested in studying a stochastic business-cycles

environment please read Chari and Kehoe (1998).

Our environment is the following: We have a continuous of identical individuals (representative agent) and the

government has to raise revenue to finance expenditure gt. Government does it by levying distortionary

taxes/subsidies on consumption, on investment, on labor and on capital income1. We assume government can also

issue debt. Each individual thus solves:

Max
ct,lt,xt,kt+1,bt+1

∞∑
t=0

βtU(ct, lt)

(1 + τc,t)ct + (1 + τx,t)xt + bt+1 ≤ (1− τl,t)wtlt + (1− τk,t)rtkt +Rb,tbt (λt)

kt+1 ≤ (1− δ)kt + xt

−bt+1 ≤ B

k0, b0 given

B is an arbitrary large number. By taking the FOC’s we have:

ct : βtUct − λt(1 + τc,t) = 0,

lt : βtUlt + λt(1 + τl,t)wt = 0,

kt+1 : λt+1(1− τk,t+1)rt+1 − λt(1 + τx,t) + λt+1(1 + τx,t+1)(1− δ) = 0,

bt+1 : λt+1Rb,t+1 − λt = 0,

The government budget balance is:

gt +Rbtbt = bt+1 + τxtxt + τctct + τltwtlt + τktrtkt,

and the feasibility constraint:

ct + xt + gt = F (kt, lt)

Competitive prices imply:

rt = Fk,t, wt = Fl,t

1Notice below that we are implicitly assuming that the government only has access to linear taxes as its set of instruments
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Then, a TDCE is an allocation X = {ct, lt, bt+1, kt+1, xt}∞t=0, a price system {rt, wt, Rbt}∞t=0 and a government policy

π = {τct, τlt, τxt, τkt+1}∞t=0, such that given the prices and government policy, the allocations solve the consumer’s

problem, prices are competitive, government budget holds and allocations are feasible (market clearing).

What is a Ramsey Equilibrium in this context?

A Ramsey equilibrium is a policy π, an allocation rule x(.), and price rules r(.), w(.) and Rb(.) such that:

π ∈ argmax
π′

∞∑
t=0

βtU(ct, lt)

s.t.

gt +Rbtbt = bt+1 + τxtxt + τctct + τltwtlt + τktrtkt,

x(π) be a competitive equilibrium, and for any policy π′, allocation x(π′) and prices (r(π′), w(π′), Rb(π
′) be a

competitive equilibrium.

Now we derive our implementability condition. We will assume the transversality condition holds. In most of the

cases, this will actually be the case since the conditions of Ekeland and Sheikman (1986) and/or Weitzman (1973) are

satisfied:

lim
t→∞

λtbt+1 = 0,

lim
t→∞

λtkt+1 = 0,

Multiply budget constraint by (λt), sum over t and use the transversality conditions:

∞∑
t=0

λt[(1 + τct)ct + (1 + τxt)(kt+1 − (1− δ)kt) + bt+1] =
∞∑
t=0

λt[(1− τlt)wtlt + (1− τkt)rtkt +Rbtbt]

Use government budget constraint and first-order conditions to obtain:

∞∑
t=0

λt[(1 + τct)ct − (1− τlt)wtlt] = λ0{[(1 + τx0)(1− δ) + (1− τk0)r0]k0 +Rb0b0}

This can be additionally expressed as:

∞∑
t=0

βt[Uctct + Ultlt] = Uc0{[(1 + τx0)(1− δ) + (1− τk0)r0]k0 +Rb0b0} (4)

The idea is the following: we want to obtain a condition that can tell us that an allocation is indeed a TDCE. We

want this condition as a function of only the allocation (no prices no taxes). In other words, the Ramsey problem tries

to find what is the optimal policy in terms of maximizing utility subject to raising enough resources for the

government and with such policy inducing a TDCE. This last condition is captured in the implementability condition.
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Proposition 4 A feasible allocation x = {ct, lt, bt+1, kt+1, xt}∞t=0 is a TDCE if and only if it satisfies the

implementability condition (4) (for some period zero policies).

Proof:

If direction:

Suppose a feasible allocation x∗ satisfies (4) for some policy. In any competitive equilibrium, bonds holding must

satisfy:

bt+1 =
∞∑

s=t+1

βt−s
[Ucscs + Ulsls]

Uct
− kt+1

To obtain this condition, use a similar procedure that was used to obtain the implementability constraint and use the

non-arbitrage condition. Given this equation, it can be seen that c∗t , k
∗
t+1 and l∗t uniquely identifies a sequence for bt

that is a part of the competitive equilibrium. Rate of return of capital and wages would be simply marginal products

of capital and labor, respectively. Finally, we choose our taxes sequences such that:

1− τlt
1 + τct

= −
U∗lt

F ∗ltU
∗
ct

(1 + τxt)
U∗ct

1 + τct
= β

U∗ct+1

1 + τct+1
[(1− τxt+1)(1− δ) + (1− τkt+1)F ∗kt+1]

U∗ct
1 + τct

= β
U∗ct+1

1 + τct+1
Rbt+1

The only if part was proved before already.

2.1 Ramsey Problem

The Ramsey problem is the following:

Max
ct,kt+1,lt

∞∑
t=0

βtU(ct, lt)

s.t.
∞∑
t=0

βt[Uctct + Ultlt] = Uc0{[(1 + τx0)(1− δ) + (1− τk0)r0]k0 +Rb0b0} (λ)

ct + gt + kt+1 = F (kt, lt) + (1− δ)kt (µt)

To make our lives easier define:

W (c, l, λ) = U(c, l) + λ[Ucc+ Ull]

so we can write our Ramsey problem as:
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Max
ct,kt+1,lt

∞∑
t=0

W (ct, lt, λ)

s.t.

ct + gt + kt+1 = F (kt, lt) + (1− δ)kt (φt)

Now, by taking First Order Conditions we have:

Wlt

Wct
= −Flt

Wct

Wct+1
= β(1− δ + Fkt) for t ≥ 1 (5)

2.2 Chamley-Judd Result

Proposition 5 If the solution to the Ramsey Problem converges to a steady state, then at the steady state, the tax

rate on capital income is zero.

Proof:

In (5), we have that in steady state:

1 = β(1− δ + Fk)

which implies that there is no intertemporal distortion in the long-run. Comparing this with the Euler-Equation of the

TDCE:

(1 + τxt)(1 + τct+1)

(1 + τct)(1 + τxt+1)
= β

[
1− δ +

(
1− τkt+1

1 + τxt+1

)
Fkt+1

]
So any allocation that satisfies the implementability constraint can be implemented by using only 2 out of the 4 taxes.

In particular, we only need a constant consumption tax and τkt+1 = 0.

Q.E.D.

Lucas said ’One principle of Ramsey taxation is that taxes should be spread evenly over similar goods... Since capital

taxation... involves taxing future consumption at higher rates than early consumption...capital is a bad thing to tax’.

2.3 Heterogeneous consumers

Suppose there are two types of consumers i ∈ {1, 2} with preferences:

∞∑
t=0

βtU i(cit, lit)
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Then the resource constraint for this economy is:

c1t + c2t + kt+1 = F (kt, l1t, l2t) + (1− δ)kt

and the implementability constraint for each individual would be:

∞∑
t=0

βt[U ictcit + U iltlit] = U i0
{

[(1 + τx0)(1− δ) + (1− τk0)r0]ki0 +Rb0b
i
0

}
The Planner’s problem does not need to be utilitarian. Let’s say the Planner puts welfare weights ωi on consumers of

type i. Then the Ramsey Problem is:

Max ω1

∞∑
t=0

βtU1(c1t, l1t) + ω2

∞∑
t=0

βtU2(c2t, l2t)

subject to the resource constraint and the implementability constraint.

Let λi denote the Lagrange Multiplier associated with the implementability constraint of individuals of type i and

write:

Max

∞∑
t=0

βtW (c1t, c2t, l1t, l2t, λ1, λ2)

s.t.

c1t + c2t + kt+1 = F (kt, l1t, l2t) + (1− δ)kt (φt)

with

W (c1, c2, l1, l2, λ1, λ2) =
∑
i=1,2

[ωiU
i(ci, li) + λi(U

i
cci + U il li]

By taking first order conditions we obtain:

Wcit = βWcit+1(1− δ + Fkt+1,

And therefore in the steady state:

1 = β(1− δ + Fkt+1),

Thus: tax on capital should be zero in the steady state.
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2.4 Capitalists vs Workers (Judd 1985)

Define a ’worker’ as follows: It is a type of consumer (let’s say type 1) and this type of consumer does not hold any

asset and cannot save, invest or borrow. Define ’capitalists’ as the type of individuals (type 2) that holds of the capital

of the economy. In this case, the implementability constraint for a ’worker’ will be:

U1
ctc1t + U1

ltl1t = 0 ∀t
∞∑
t=0

βt[U2
ctc2t] = U2

0

{
[(1 + τx0)(1− δ) + (1− τk0)r0]k2

0 +Rb0b
2
0

}
Suppose the Planner only cares about workers (that means, the Pareto weight for capitalists is zero):

Max
∞∑
t=0

βtU1(c1t, l1t)

s.t.

U1
ctc1t + U1

ltl1t = 0 ∀t
∞∑
t=0

βtU2
ctc2t = U2

0

{
[(1 + τx0)(1− δ) + (1− τk0)r0]k2

0 +Rb0b
2
0

}
c1t + c2t + kt+1 = F (kt, l1t, l2t) + (1− δ)kt, (φt)

and define:

W (c1, c2, l1, l2, λ1, λ2) = U1(c1, l1) + λi(U
1
c c1 + U1

l l1)

First Order Conditions imply:

λβt[U2
cctc2t + U2ct] + φt = 0,

φt = φt+1(1− δ + Fkt+1)

in steady state φt+1 = βφt and then:

1 = β(1− δ + Fkt+1)

So Chamley-Judd’s result holds.
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2.5 Dividend Taxes (Mcgrattan and Prescott - 2005)

In this example, we will incorporate corporate taxes and dividend taxes. In this environment, individuals can trade

share of corporations, st, at price vt. Denote dividends by dt. Dividends are taxed at the rate τdt. Consumers solve:

∞∑
t=0

ct,st+1,lt

βtU(ct, lt)

s.t.
∞∑
t=0

pt[ct + vt(st+1 − st)] ≤
∞∑
t=0

pt[(1− τdt)dtst + (1− τlt)wtlt]

s0 = 1

By taking First Order Conditions we have:

Uct
Ult

= −(1− τlt)wt

ptvt = pt+1vt+1 + pt+1(1− τdt+1)dt+1

Then, the implementability constraint will be:

∞∑
t=0

βt[Uctct + Ultlt] = Uc0[v0 + (1− τd0)d0]s0 (6)

In the firm’s side, there is a corporation that maximizes the present discounted value of owner’s dividends and pays

taxes τt on corporate income;

Max

∞∑
t=0

pt(1− τdt)dt

s.t.

dt = f(kt, lt)− xt − wtlt − τt(f(kt, lt)− δkt − wtlt),

kt+1 = (1− δ)kt + xt,

First order condition for the corporation is:

flt = wt

pt(1− τdt)
pt+1(1− τdt+1)

= 1 + (1− τlt+1)(fkt+1 − δ)

The feasibility conditions are:

ct + kt+1 + gt = f(kt, lt) + (1− δ)kt,
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st = 1

and the government budget constraint:

∞∑
t=0

ptgt =
∞∑
t=0

pt[τdtdtst + τt(f(kt, lt)− δkt − wtlt) + τltwtlt]

Stop for a second and think: Is the implementability constraint (6) sufficient? This means, can any

competitive equilibrium be supported by (6)? If not, what other conditions should be added?

2.6 Exercise for you

Now suppose we are interested in studying a non-steady state situation and we have that preferences are given by:

U(c, l) =
c1−σ

1− σ
− v(l),

What is the Ramsey tax on capital income for t ≥ 2?

2.7 Werning (QJE-2007)

In this paper, Werning studies a dynamic environment in which indiivduals are heterogeneous in terms of their skills.

In this case, the government does not rule out lump-sum taxation. Instead, it allows it. However, the government is

not allowed to tax the individual’s skills. Government is only allowed to tax labor income (distortionary tax). This

tax can be used to redistribute income across people with different skill.

2.7.1 Environment

• Denote by c and l consumption and hours worked, respectively. Labor productivity is determined by θ, meaning

that working l hours delivers θl efficiency labor units. Preferences are represented by a utility function U i(c, l)

that can be written as: U i
(
c, y
θi

)
.

• There is a finite number of types θ ∈ Θ = {θ1, ..., θN}. If an individual is of type θi we will just call them the

i-type individual. The fraction of individuals of type i in the population is given by πi.

• The aggregate state of the economy is st ∈ S with S a finite set and publicly observable. The history of states at

period t is denoted by st = (s0, s1, ...st and the probability of a history st is Pr(st).

• Production is done using capital and labor.
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2.7.2 Individual’s Problem

An i-type individual solves the following maximization:

Max
c,y

∞∑
t=0

∑
st∈St

βtPr(st)U i(ct(s
t), y(st))

s.t.

∞∑
t=0

∑
st∈St

p(st)[ct(s
t) + kt+1(st)] ≤

∞∑
t=0

∑
st∈St

p(st)[wst(1− τ(st))y(st) +R(st)k(st−1)]− T

ki0(s0) = ki0 given

where Rt(s
t) = 1 + (1− κ(st))(rt(s

t)− δ) and T =
∑

st∈St p(s
t)T (st) denotes the present value of lump-sum taxes.

There is heterogeneity in skills and initial endowment of capital.

2.7.3 Markets and Government

Denote the aggregate variables by:

Lt(s
t) =

∑
i

πiyit(s
t), C(st) =

∑
i

πicit(s
t), Kt(s

t) =
∑
i

πikit(s
t)

Then an allocation is said to be feasible if it satisfies:

Ct(s
t) +Kt(s

t) + gt(s
t) = F (Kt(s

t−1), Lt(s
t) + (1− δ)Kt(s

t−1)

2.7.4 Firms

Firms optimization conditions will just imply:

rt(s
t) = Fk(Kt(s

t−1), Lt(s
t)), Lt(s

t) = Fl(Kt(s
t−1), Lt(s

t)),

Define a competitive equilibrium for this environment

2.7.5 Implementability Constraint

Werning (2007) exploits the fact that labor income taxes are uniform across types. Furthermore, he shows that

implementability constraint can be written just as a function of the aggregates. To see this, notice that from the

First-Order-Conditions we have:

U iy(s
t)

U ic(s
t)

=
U jy (st)

U jc (st)
= −w(st)(1− τ(st)) ∀i, j,
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U ic(s
t)

U ic(s
0)

=
U jc (st)

U jc (s0)
=

p(st)

βtPr(st)p(s0)
∀i, j,

An important feature to notice here is that with linear taxation, all workers face the same after-tax prices for

consumption p(st), and labor −p(st)w(st)(1− τ(st). As a result, marginal rates of substitution are equated across

workers. This means that any equilibrium delivers an efficient assignment of individual consumption and labor. More

specifically, all inefficiencies that arise due to distortive taxation are confined to the determination of aggregates

{c(st), L(st)}. To see this, we will show that given aggregate consumption and labor output (Ct(s
t), Lt(s

t), the

assignment of allocation of consumption {ci(st), yi(st)} solves a Planning problem for some pareto weights denoted by

ϕ = {ϕ1, ..., ϕN}, such that
∑

i ϕ
iπi = 1. In particular {cit(st), yi(st)} is the solution to:

Um(C(st), L(st);ϕ) ≡Max
ci,yi

∑
i

πiϕiU i(ci, yi)

s.t.∑
i

= πici = C(st)
∑
i

πiyi = L(st);

Now denote the solution of this problem by:

ci = hic(C,L, ϕ), yi = hiy(C,L, ϕ);

therefore

(ci(st), yi(st)) = hi(C,L, ϕ)

in which hi = (hic, h
i
y). Envelope condition implies:

UmC (C(st), L(st);ϕ) = ϕiU ic(c
i, yi);

UmL (C(st), L(st);ϕ) = ϕiU iy(c
i, yi)

Equilibrium after-tax prices can be computed as if the economy were populated by a fictious representative-agent with

the utility function Um(c, L;ϕ). In any competitive equilibrium we will have then:

UmL (st)

UmC (st)
= −w(st)(1− τ(st)), (7)

Umc (st)

Umc (s0)
=

p(st)

βtPr(st)p(s0)
∀i, j (8)

and by the envelope condition, equations (7) and (8) will hold with U i in place of Um and therefore marginal rates of

substitution will be equated to after-tax prices. How about the implementability constraint? If we compute the

individual-implementability constraint we have:
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∞∑
t=0

∑
st∈St

βt
[
U ic(c

i
t(s

t), yit(s
t))cit(s

t) + U iy(c
i
t(s

t), yit(s
t)
]

= U ic(c
i
0(s0), yi0(s0))[R0k

i
0 − T ]

We can replace these individual allocations with functions of aggregate variables:

∞∑
t=0

∑
st∈St

βt[UmC (C(st), L(st); )hic(C(st), L(st);ϕ) + UmL (C(st), L(st);ϕ)hiy(C(st), L(st);ϕ)]

= U ic(C(s0), L(s0);ϕ)[R0k
i
0 − T ] ∀i (9)

Notice that this last equation is fully expressed as a function of aggregates, weights and initial endowments.

Proposition 6 Given initial wealth R0k
i
0, an aggregate allocation {Ct(st), Lt(st),Kt(s

t)} can be implemented as a

competitive equilibrium if and only if.

• It is feasible.

• ∃ weights ϕ and lump-sum T such that the implementability constraint (9) holds ∀i = 1, ..., N .

Proof:

We just have showed that any competitive equilibrium is feasible and it satisfies (9). Now, suppose we have a feasible

allocation that satisfies (9). Then, given that allocation we can generate prices and individual allocations using (7)

and (8). Since these allocations satisfy individual’s optimal conditions then we have a competitive equilibrium.

Furthermore, these individual allocations will be feasible since they satisfy (9).

Q.E.D.

2.7.6 A Planning Problem

Suppose the Planner weights each individual i with λi.
∑

i πiλi = 1:

max

∞∑
t=0

∑
st∈St

∑
i∈I

λiπiβtPr(st)U i(hi(C(st), L(st));ϕ)

s.t.
∞∑
t=0

∑
st∈St

βt[UmC (C(st), L(st); )hic(C(st), L(st);ϕ) + UmL (C(st), L(st);ϕ)hiy(C(st), L(st);ϕ)]

= U ic(C(s0), L(s0);ϕ)[R0k
i
0 − T ] ...(µi) ∀i

C(st) +K(st) + g(st) = F (Kt(s
t−1), Lt(s

t)) + (1− δ)Kt(s
t−1)

As usual we create the following variable:

W (C,L;ϕ, µ, λ) ≡
∑
i

πi
(
λiU i(hi(C,L;ϕ))

)
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+µi
[
UmC (C,L;ϕ)hic(C,L;ϕ) + UmL (C,L;ϕ)hiy(C,L;ϕ)

]
so the problem can be written as:

Max
∞∑
t=0

∑
st∈St

∑
i∈I

λiπiβtPr(st)W (C(st), L(st);ϕ, µ, λ)− U ic(C(s0), L(s0);ϕ)
∑
i

πiµi[R0k
i
0 − T ]

s.t.

C(st) +K(st)− (1− δ)K(st−1) = F (K(st−1), L(st), st, t)

The first order conditions are:

FL(K(st−1), L(st), st, t) = −WC(C(st), L(st);ϕ, µ, λ)

WL(C(st), L(st);ϕ, µ, λ)

WC(C(st), L(st);ϕ, µ, λ) = β
∑

st+1\st
WC

(
C(st+1), L(st+1);ϕ, µ, λ

)
R∗(st+1)Pr(st+1)

with R∗(st+1) = 1 + δ + Fk(K(st), L(st+1), st+1, t+ 1). And the FOC with respect to initial capital:

∑
i

µiπiki0 = 0 or R0 = 0

2.7.7 Optimal Taxes

By matching the Euler Equation in the Ramsey’s problem with the FOC in the positive economy we have that:

τ∗t (st) = 1−
UmL (C;L;ϕ)

WL(C,L;ϕ, µλ)

WC(C,L;ϕ, µλ)

UmC (C;L;ϕ)

Intertemporal optimality in equilibrium implies:

UmC (C(st), L(st);ϕ) = β
∑

st+1\st
UmC (C(st+1), L(st+1);ϕ)R(st+1)Pr(st+1)

One way to obtain what is desired by the Ramsey planner is by making the capital income tax such that:

R(st+1) = R∗(st+1)
UmC (C(st), L(st);ϕ)

WC(C(st), L(st);ϕ, µλ)

WC(C(st+1), L(st+1);ϕ, µλ)

UmC (C(st+1), L(st+1);ϕ)

2.7.8 An Example

Suppose preferences were represented by the following felicity function:

U i(c, y) =
c1−σ

1− σ
− α(y/θi)

γ

γ

What are hiC(C,L;ϕ) and hiL(C,L;ϕ)
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Formulated as the static problem we had before we have and denoting by λ the Lagrange Multiplier associated to the

resource constraint:

ϕic−σi = λ

ϕi(yi/θi)
γ−1 1

θi
= λ

replacing these expressions in the resource constraints we can find that:

hic(C,L;ϕ) = ωicC and hiy(C, Y ;ϕ) = ωiyL

with:

ωic =
(ϕi)1/σ∑
i πi(ϕi)

1/σ
and ωiy =

(θi)
γ
γ−1 (ϕi)

−1
γ−1∑

i πi(θ
i)

γ
γ−1 (ϕi)

−1
γ−1

Um = Φm
u

c1−σ

1− σ
− Φm

v α
(y/θi)γ

γ
and W = ΦW

u

c1−σ

1− σ
− ΦW

v α
(y/θi)γ

γ

in which Φm
u , Φm

v , ΦW
u and ΦW

v are some constants.This will imply:

τ∗(C,L) = 1− Φm
v

Φm
u

ΦW
u

ΦW
v

Furthermore:

UmC (C(st), L(st);ϕ)

WC(C(st), L(st);ϕ, µλ)

WC(C(st+1), L(st+1);ϕ, µλ)

UmC (C(st+1), L(st+1);ϕ)
= 1

so:

R(st+1) = R∗(st+1)

and this implies that:

κ(st) = 0 ∀t ≥ 1

which means that the result of Chamley-Judd holds also in this environment for t ≥ 1. Does this hold for every

period? If ki0 = k0∀i then taxing initial capital is equivalent to having a lump-sum tax. Since lump-sum taxes are not

ruled out in this framework then taxing initial capital becomes unnecessary. With initial wealth heterogeneity and

without available lump-sum taxes, initial wealth taxation is usually desirable.

Notice that this model nests the representative-agent that we studied originally (just by making θi = 1∀i and by ruling

out lump-sum tax to zero. Why is the optimal capital income tax equal to zero? The optimal capital income tax is zero

in this example because preferences are homothetic over consumption paths and separable (consumption and labor).

Therefore, consumption at different dates should be taxed uniformly, which is equivalent to a zero capital income tax.
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How about the labor income tax? First, notice that this tax rate is constant over time and across histories. However,

although the tax rate remains constant across realizations of uncertainty, the stochastic processes governing

government expenditure and technology does itself affect the level of this constant tax rate (tax rate is not necessarily

constant across comparative statics). Why is it like that? Distortionary taxation acts like a redistribution mechanism:

a positive tax rate makes the high-skilled workers pay more taxes than low-skilled workers. Optimal tax rate at any

point of time balances distributional concerns against efficiency. The tax will be smooth because the determinants of

inequality are constant over time and invariant to government expenditure or aggregate technology shocks. In other

words, the marginal cost from distortions should be equal to the marginal benefit of redistribution. Since the latter is

constant and invariant to policy, then the optimal distortionary tax is constant.

2.7.9 Exercise

Suppose:

U i(c, y) = αlog(c) + (1− α)log
(

1− y

θi

)
• Find hiC(C,L;ϕ), hiY (C,L;ϕ).

• Find Um(C,L;ϕ) and W (C,L).

• Find τ∗(L) and κ(st)

2.8 Taxing Capital in Life Cycle Economies (Erosa and Gervais (2002))

Imagine an environment with individuals who live 2 periods (no mortality risk). Denote by t the period at which a

generation is born. This means, in period t we have 2 generations living together: the generation that was born at t

and the generation born at t-1. There is no population growth.

2.8.1 Endowments:

Each individual is endowed with one unit of time at each age j and can transform one unit of time into zj units of

efficient labor. zj is interpreted as the labor productivity of an individual at age j. Individuals are also endowed with

initial assets denoted by a0,t. In general, we will denote individual variables by xj,t, where j denotes the age of the

individual and t the generation at which she was born.

2.8.2 Preferences:

Individuals derive utility from consumption and leisure. Preferences are represented by the following utility function:

U(c0,t, l0,t) + βU(c1,t, l1,t)
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2.8.3 Technology:

Production is done using capital and labor. They assume a production function with constant returns to scale,

denoted by f(kt, lt). In equilibrium then we will have:

rt = fk(kt, lt), wt = fl(kt, lt),

2.8.4 Markets and Government:

Government wants to finance an exogenous stream of expenditures. Paper assumes the government has access to a set

of fiscal instruments and to a commitment technology to implement its fiscal policy. The set of instruments is given

by: government debt and proportional taxes on consumption, labor income, and capital income. Taxes are allowed to

depend on the age of the individuals:

∞∑
t=0

ptgt =
∞∑
t=0

pt

∑
j=0,1

τ ct−j,jcj,t−j +
∑
j=0,1

τ lt−j,jwtzjlj,t−j + τkt−1,1(rt − δ)a1,t−1


And the optimization problem of an individual is:

Max U(c0,t, l0,t) + βU(c1,t, l1,t)

s.t.

(1− τ c0,t)c0,t + a1,t ≤ (1− τ l0,t)wtz0l0,t

(1− τ c1,t)c1,t ≤ (1− τ l1,t)wtz1l1,t + (1 + (1− τk1,t))(rt − δ)a1,t

What is the notion of the Planner’s problem in this case? To have this notion, we first denote by U t to the lifetime

utility obtained by the generation born at period t given a sequence of consumption and leisure:

U t = U(c0,t, l0,t) + βU(c1,t, l1,t)

The government has a discount factor γ across generations. Them, the planner aims to maximize:

∞∑
t=0

γtU t

Exercise: Show that the implementability constraint in this model is:

Uc0,tc0,t + Ul0,t l0,t + β(Uc1,tc1,t + Ul1,t l1,t) = 0 (10)

Exercise: Show that a feasible allocation is implementable if and only if it satisfies (10). Something that you will

need to think about is the fact that having age-dependent taxes is essential for this result to hold. Marginal rates of

27



substitution between consumption and leisure are not necessarily constant across generations alive at any date, even

for allocations that satisfy the implementability constraint.

2.8.5 Ramsey Problem:

The Ramsey problem solves the following:

max

∞∑
t=0

γt[U(c0,t, l0,t) + βU(c1,t, l1,t)]

s.t.

Uc0,tc0,t + Ul0,t l0,t + β
(
Uc1,tc1,t + Ul1,t l1,t

)
= 0; (γtλt)

ct + kt+1 = f(kt, lt) + (1− δ)kt; (γtφt)

ct = c0,t + c1,t−1

lt = l0,t + l1,t−1

kt = a1,t−1

By taking first-order conditions to this problem we find:

γtUc0,t + γtλt
(
Uc0,t + Ucc0,tc0,t + Ulc0,t l0,t

)
= γtφt

γtβUc1,t + γtβλt
(
Uc1,t + Ucc1,tc1,t + Ulc1,t l1,t

)
= γt+1φt+1

γtUl0,t + γtλt
(
Ul0,t + Ull0,t l0,t + Ulc0,tc0,t

)
= γtφtflt

γtβUl1,t + γtβλt
(
Ul1,t + Ull1,t l1,t + Ucl1,tc1,t

)
= γt+1φt+1flt+1

γtφt = γt+1φt+1(1− δ + fkt+1)

From this system we obtain:

Uc0,t + λt(Uc0,t + Ucc0,tc0,t + Ulc0,t l0,t)

Uc1,t + λt(Uc1,t + Ucc1,tc1,t + Ulc1,t l1,t)
== β(1− δ + fkt+1)

Steady State: The notion of steady state in this environment is the following:

(c0,t, c1,t, l0,t, l1,t, a1,t) = (c0, c1, l0, l1, a1) and λt = λ. Then, the solution of the Ramsey Problem satisfies the following

condition in steady state:

Uc0 + λ(Uc0 + Ucc0c0 + Ul0l0)

Uc1 + λ(Uc1 + Ucc1c1 + Ul1l1)
= β(1− δ + fk)
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2.8.6 Optimal Fiscal Policy

The solution to the Ramsey problem generally features nonzero taxes on labor and capital income. In contrast with

infinitely-lived agent models, if the Ramsey allocation converges to a steady-state solution, optimal capital income

taxes will generally be different from zero even in steady state. What is the intuition of this? Basically the difference

comes from the fact that consumption and leisure are not constant in general over the life-cycle, in contrast with

infinitely lived agent models, where this actually happens in the steady state. The Chamley-Judd result holds in the

infinitely-lived economy regardless of the utility function. In this model, there are only very special cases in which the

Chamley-Judd result holds.

Exercise: Assume the Utility Function is Additive Separable across time and that individuals discount the future at

a fixed rate β. Also assume that zj = z∀j and γ = β. Show that it is not optimal to tax capital income in the long-run

with the set of fiscal instruments described above. What is the intuition?

Exercise: Assume the Utility function has the following form:

U(c, l) = V (G(c), l),

where c = (c0, c1), l = (l0, l1) and G(.) is homothetic. This means assuming the utility function is weakly separable.

Show that the Ramsey problem prescribes zero taxes on capital income for time period 1 and thereafter provided

labor income taxes can be age-conditioned. How do you relate this result to the Uniform Commodity Taxation result?
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3 Static Mirrleesian Approach to Optimal Taxation

The Mirrleesian approach to Optimal Taxation is also known as the mechanism design approach of taxation.

Something to notice in the Ramsey approach of optimal taxation is that we arbitrarily chose specific functional forms

for the tax rates. In particular, so far we have been working with linear taxes (constant marginal rates) and we have

excluded lump-sum taxes. Without these restrictions, lump sum taxes may become very attractive in these models.

However, is this the best the government can do? what if the government can achieve better outcomes by using more

sophisticated instruments (non-linear)? Equally important, what if there are some aspects of individuals that can not

be observable by the government, like abilities? Is it really true that it is possible to implement desirable allocations if

we ignore these features?

The Mirrleesian approach exploits information frictions/enforcement limitations of the government to pin down what

are the instruments that the government needs to obtain desirable outcomes. In particular, the optimal policies are

found among those that can deliver incentive-compatible allocations, given the information frictions or enforcement

limitations. In other words, the government under this approach is careful to check whether a tax policy is

implementable given the information limitations or not. How do we do this? Basically we have to follow two big steps:

1. Find a socially optimal allocation given the information limitations.

2. Design a tax system that can implement these allocations.

Before we jump to the canonical model, first let’s introduce some terminology of mechanism design. If you are

interested in learning more about mechanism design you can check any graduate level textbook of microeconomics.

3.1 Basic Terminology:

Suppose for simplicity that there are I agents, indexed by i ∈ {1, 2, ..., I} who live T <∞ periods. Suppose preferences

are represented by the utility function:

T∑
t=1

βt−1 (u(ct)− v(lt))

with 0 < β < 1 and u(.), v(.) satisfying the usual assumptions. Notice that I am assuming additive separability in

preferences. We will assume that while consumption ct is observed, effort or hours worked lt is only privately observed.

Denote by Θ the set of skills or ability. These skills are given to the individual. In other words, it is nature who draws

θTi = (θ1
i , ..., θ

T
i ) ∈ ΘT for each individual i. Assume θTi is drawn i.i.d across agents. Denote by π(.) the probability

density function over ΘT draws. What is the timeline in this environment? At the beginning of each period t, agents

learn privately θnt. An individual with skill θit and works lit hours produces yit units of consumption good/output:
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yit = θitlit

It is going to be more convenient for us to work with yit than with lit. We assume that yit is observable but both θit

and lit are not.

Definition 2 An allocation is a sequence of functions (ci, yi)
I
i=1:

ci : (ΘT )I → RT+

yi : (ΘT )I → RT+

such that cit and yit are (θt1, ..., θ
t
I) - measurable.

Definition 3 An allocation (ci, yi)
I
i=1 is feasible if:

I∑
i=1

T∑
t=1

R−tcit(θ
T
1 , ..., θ

T
I ) ≤

I∑
i=1

T∑
t=1

R−tyit(θ
T
1 , ..., θ

T
I ), R > 1

∀(θT1 , ..., θTI ) such that π(θT1 , ..., θ
T
I ). Furthermore, denote by FA the set of feasible allocations.

Now, is this enough to have guidance regarding policies? What is the set of implementable allocations given private

information? The following definitions shed light about this. To make things simple, we will assume T = 1.

Definition 4 A Mechanism is a set of actions (A1, ..., AI) and outcome functions:

(gc, gy) :
I∏
i=1

Ai → FA

The timing is:

1. Nature draws θ for each individual i.

2. Agents privately observe θi and simultaneously choose an action ai ∈ Ai.

3. Outcome is determined according to the outcome function.

Definition 5 Let (A, gc, gy) be a Mechanism. a Bayesian Nash Equilibrium (BNE) is a collection of strategies

{α∗i }Ii=1, α∗i : Θ→ An such that:

α∗i (θi) ∈ argmax
a∈An

∑
θ−i

π(θ−i)

(
u(gci (ρ, α

∗
−i(θ−i)))− v

(
gyi (ρ, α∗−i(θ−i)

θi

))
We call {gci (α∗1(θ1), ..., α∗I(θI))}Ii=1 and {gyi (α∗1(θ1), ..., α∗I(θI))}Ii=1 an equilibrium outcome.
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Definition 6 A feasible allocation (ci, yi))
I
i=1 is implementable if there is a mechanism (A, gc, gy) and a BNE {α∗i }Ii=1

of such mechanism that satisfies:

ci = gci (α
∗
1(θ1), ..., α∗I(θI)), yi = gyi (α∗1(θ1), ..., α∗I(θI))

The notion of implementability is pretty much clear. However, it sounds a bit abstract specially when we think of

optimal fiscal policy. In particular, notice that this definition does not impose any restriction on the types of

mechanisms considered. Optimal policy is about implementing the best possible allocation. Searching among different

kinds of mechanisms (space of games) and finding the one that has a BNE that implements that best possible

allocation sounds like a lot of work to do does not it? The good news is that there is a beautiful result that allow us to

restrict our attention to a particular game without losing generality. Let me give you a couple of definitions to talk

more about this:

Definition 7 A Direct mechanism is such that Ai = Θ ∀i.

Definition 8 A truth-telling BNE of a direct mechanism (Θ, gc, gy) is α∗i (θi) = θi ∀i such that:

θi ∈ ArgMax
a∈Θ

∑
θ−i

π(θ−i)

(
u(gci (a, θ−i))− v

(
gyi (a, θ−i)

θi

))
An allocation is truthfully implementable if:

ci = gci (θ1, ..., θI), yi = gyi (θ1, ..., θI),

In other words, in a direct mechanism, actions of individuals is the set of types. Individuals are asked to report their

types (skills). We are interested in studying equilibria in which types are truthfully revealed. In the following result,

we will see that we do not loss generality in doing that.

Proposition 7 An allocation {(ci, yi)}Ii=1 is implementable if and only if it is truthfully implementable in a direct

mechanism.

Proof. Only if part:

Suppose an allocation (ci, yi)
I
i=1 is implementable as outcome of some mechanism (A, gc, gy). We want to show that it

is truthfully implementable in a direct mechanism. Let’s construct such mechanism as follows:

g̃c(θ1, ..., θI) = gc(α∗1(θ1), ..., α∗I(θI)), g̃y(θ1, ..., θI) = gy(α∗1(θ1), ..., α∗I(θI)),

Where {αi}Ii=1 is the BNE of some mechanism (A, gc, gy)). We have to show now that truth-telling is a BNE of

(Θ, g̃c, g̃y). To prove this, suppose as a matter of a contradiction that there is a type θi and a report θ̂ ∈ Θ such that:

32



∑
θ−i

π(θ−i)

(
u(g̃ci (θ̂, θ−i))− v

(
g̃yi (θ̂, θ−i)

θi

))
>
∑
θ−i

π(θ−i)

(
u(g̃ci (θi, θ−i))− v

(
g̃yi (θ̂, θ−i)

θi

))

=
∑
θ−i

π(θ−i)

(
u(gci (α

∗
i (θi), α

∗
−i(θ−i)))− v

(
gyi (α∗i (θi)), α

∗
−i(θ−i)

θi

))
The last term follows from the definition of (g̃c, g̃y). This implies that there must exist a β = α∗−1

n (θ̂) ∈ An such that:

∑
θ−i

π(θ−i)

(
u(gci (β, α

∗
−i(θ−i)))− v

(
gyi (α∗i (β, α

∗
−i(θ−i)

θi

))
>

∑
θ−i

π(θ−i)

(
u(gci (α

∗
i (θi), α

∗
−i(θ−i)))− v

(
gyi (α∗i (θi)), α

∗
−i(θ−i)

θi

))
which is a contradiction of BNE. Therefore, (ci, yi)

I
i=1 can be implemented by:

ci = g̃c(θ1, ..., θI), yi = g̃y(θ1, ..., θI),

If part: Obvious.

The Revelation Principle is so powerful. It allow us to restrict our attention to direct mechanisms and allocations

that are truthfully revealing. This means that the set of implementable allocations are the ones satisfying the

following condition:

∑
θ−i

π(θ−i)

(
u(ci(θi, θ−i))− v

(
yi(θi, θ−i)

θi

))
≥
∑
θ−i

π(θ−i)

(
u(ci(θ̂, θ−i))− v

(
yi(θ̂, θ−i)

θi

))

∀i,∀θ̂ ∈ Θ. We are going to focus on studying environments in which there is a unit mass of agents.

3.2 The Canonical Model

Suppose T = 1 and that there are only two types θH and θL with θH > θL. I want to show you that whether θ is

private information or not really matters in terms of implementation of allocations.

3.2.1 Public Information

Suppose the types of individuals is observed by everyone, in particular, by a utilitarian planner that wants to

maximize:

Max
c(θL),c(θH),y(θL),y(θH)

π(θH)

[
u(c(θH))− v

(
y(θH)

θH

)]
+ π(θL)

[
u(c(θL))− v

(
y(θL)

θL

)]
s.t.

π(θH)[c(θH)− y(θH)] + π(θL)[c(θL)− y(θL)] = 0 ...(λ)
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This last constraint is the feasibility constraint. By taking first-order conditions we have:

u′(c(θH)) = u′(c(θL)) = λ =⇒ c(θH) = c(θL)

1

θH
v′
(
y(θH
θH

)
=

1

θL
v′
(
y(θL
θL

)
= λ =⇒ y(θH) > y(θL)

Therefore:

u(c(θL))− v
(
y(θL)

θH

)
︸ ︷︷ ︸
Pretending you are low type

= u(c(θH))− v
(
y(θL)

θH

)
> u(c(θH))− v

(
y(θH)

θH

)

This means that the high-type has incentives to pretend that she is low-type. In other words, this is not incentive

compatible and thus it can not be implemented as a BNE. Therefore, we can infer than when individuals have private

information about their type, at least one incentive-compatibility constraint is going to be binding at the optimal

solution.

3.2.2 Private Information

When we assume that the types are private information, the problem that the planner will have to solve is different.

In particular, if we want to implement optimal allocation we will need to incorporate the incentive-compatibility

constraints:

Max
cH ,yH ,cL,yL

π(θH)

[
u(c(θH))− v

(
y(θH)

θH

)]
+ π(θL)

[
u(c(θL))− v

(
y(θL)

θL

)]
s.t.

π(θH)[c(θH)− y(θH)] + π(θL)[c(θL)− y(θL)] = 0 (FEAS)

u(c(θH))− v
(
y(θH)

θH

)
≥ u(c(θL))− v

(
y(θL)

θH

)
(IC1)

u(c(θL))− v
(
y(θL)

θL

)
≥ u(c(θH))− v

(
y(θH)

θL

)
(IC2)

Something to notice about this problem is that it typically does not feature a concave objective function with a convex

constraint set. Why? because u(c)′s and v′s appear on both the left and the right hand side of the IC’s constraints.

Now, what are the properties of the allocations that satisfy both Feasibility and Incentive Compatibility? The

following lemmas sumarize these properties:

Lemma 1 If the contract (cL, yL) and (cH , yH) satisfies FEAS, IC1 and IC2, then one of the configurations must hold:

• cH > cL and yH > yL;

• cL > cH and yL > yH ; or,
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• cL = cH and yL = yH

Proof.

1. Suppose cH > cL but yH ≤ yL. If this is true, then:

u(c(θH))− v
(
y(θH)

θL

)
> u(c(θL))− v

(
y(θH)

θL

)
since c(θH) > c(θL) and u is monotone. Moreover:

u(c(θL))− v
(
y(θH)

θL

)
≥ u(c(θL))− v

(
y(θL)

θL

)
Then this violates IC2 and therefore these kind of allocations are not feasible.

2. A similar procedure is followed to show that combinations of cH ≥ cL and yH < yL are also not feasible.

3. Now suppose cH < cL but yH ≥ yL. If this were true, then:

u(c(θL))− v
(
y(θL)

θH

)
> u(c(θH))− v

(
y(θH)

θH

)
IC1 would be violated.

4. Something similar follows to show that cH ≤ cL but yL < yH . So this can not be the case of the solution.

Now I will show that only one of those three possible configurations stated in Lemma 1 can be an optimal

allocation. The following lemmas state this formally:

Lemma 2 The configuration cL > cH and yL > yH is not feasible.

Proof. Suppose as a matter of a contradiction that cL > cH and yL > yH . By IC2 we would have:

U(cL, yL; θL)− U(cH , yH ; θL) = u(cL)− u(cH)−
[
v

(
yL
θL

)
− v

(
yH
θL

)]
≥ 0

we can rewrite this as:

u(cL)− u(cH)− 1

θL

∫ yL

yH

v′
(
y

θL

)
dy ≥ 0

Therefore:

u(cL)− u(cH)︸ ︷︷ ︸
>0 (cL>cH)

≥ 1

θL

∫ yL

yH

v′
(
y

θL

)
dy

35



Since v(.) is convex and yL > yH , it follows that the second term is also positive. However, since θL < θH and v(.) is

convex, it follows that v′
(
y
θH

)
< v′

(
y
θL

)
∀y, and as a result:∫ yL

yH

v′
(
y

θH

)
dy <

∫ yL

yH

v′
(
y

θL

)
dy

Since θH > θL we also have:

1

θH

∫ yL

yH

v′
(
y

θH

)
dy <

1

θL

∫ yL

yH

v′
(
y

θL

)
dy

Then:

u(cL)− u(cH) ≥ 1

θL

∫ yL

yH

v′
(
y

θL

)
dy >

1

θH

∫ yL

yH

v′
(
y

θH

)
dy

And notice that:
1

θH

∫ yL

yH

v′
(
y

θH

)
dy = v

(
yL
θH

)
− v

(
yH
θH

)
Therefore:

u(cL)− u(cH)−
[
v

(
yL
θH

)
− v

(
yH
θH

)]
> 0

U(cL, yL; θH)− U(cH , yH ; θH) > 0

which is a violation of IC1.

Lemma 3 The configuration cL = cH and yL = yH is not optimal.

Proof. To make this proof more intuitive, consider first an autarkic allocation in which each agent is left alone to

consume whatever she produces. Formally, this means assuming that agents solve:

Max
c,y

u(c)− v
(y
θ

)
s.t.

c ≤ y

which can be rewritten as:

u(y)− v
(y
θ

)
Taking FOC’s we get:

u′(c(θ)) =
1

θ
v′
(
y(θ)

θ

)
for each type. The higher is θ, the higher c(θ) has to be to hold this equation. As a result, higher types would be

consuming and producing more in this autarkic setting. Notice also that this autarkic allocation satisfies Feasibility
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and both of the Incentive Compatibility Constraints. However, when cH = cL and yH = yL, different types are again,

in effect, in autarky (they consume whatever they produce). Now take a second to think: when the planner distorts

the decisions by forcing individuals to produce differently than they would have done if left alone, would this result in

an increase of average utility? Turns out that the answer is not and the intuition is that without providing any

insurance or redistribution, this only has distortionary effects. Formally:

Suppose (c, y) denotes the consumption/production pair. Consider the following cases:

1. u′(c) < 1
θH
v′
(
y
θH

)
, Since θH > θL, then: u′(c) < 1

θL
v′
(
y
θL

)
. Therefore, by decreasing c and y at the same time

by a small amount would keep the IC constraints holding and agents would be better off.

2. If u′(c) = 1
θH
v′
(
y
θH

)
, then u′(c) < 1

θL
v′
(
y
θL

)
. Therefore, decreasing production and consumption of low types

would make them better off keeping high types without incentives to deviate to new allocation.

I will leave you as an exercise to check what happens in the two following cases: 1) u′(c) > 1
θH
v′
(
y
θH

)
and

u′(c) = 1
θL
v′
(
y
θL

)
, and 2) u′(c) > 1

θH
v′
(
y
θH

)
and u′(c) < 1

θL
v′
(
y
θL

)
.

Proposition 8 At the optimal allocation, cH > cL and yH > yL.

Proposition 9 At the optimal allocation, IC2 is not binding.

Proof. Notice that we can rewrite the Planner’s problem as follows:

Max
cL,yL,yL,yH

πH

[
u(c(θH))− v

(
y(θH)

θH

)]
+ πL

[
u(c(θL))− v

(
y(θL)

θL

)]
(SP1)

s.t.

πHc(θH) + πLc(θL) ≤ πHy(θH) + πLy(θL) (FEAS)

u(c(θH))− v
(
y(θH)

θH

)
≥ u(c(θL))− v

(
y(θL)

θH

)
(IC1)

u(c(θL))− v
(
y(θL)

θL

)
≥ u(c(θH))− v

(
y(θH)

θL

)
(IC2)

c(θL) > c(θH) and y(θL) > y(θH) (MONOT )

By the previous proposition, we know that the last constraint is redundant. Now consider a relaxed version of this

problem:

Max
c(θL),y(θL),y(θL),y(θH)

πH

[
u(c(θH))− v

(
y(θH)

θH

)]
+ πL

[
u(c(θL))− v

(
y(θL)

θL

)]
(RP1)
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s.t.

πHc(θH) + πLc(θL) ≤ πHy(θH) + πLy(θL) (FEAS)

u(c(θH))− v
(
y(θH)

θH

)
≥ u(c(θL))− v

(
y(θL)

θH

)
(IC1)

c(θL) > c(θH) and y(θL) > y(θH) (MONOT )

Since this problem has less constraints than the previous one, if the solution to (RP1) satisfies IC2, then it will be a

solution for (SP1) as well. We will show this.

First, we show that (IC1) will be satisfied with equality in the solution of this problem. Suppose (cL, yL) and (cH , yH)

are the solutions to this problem. Suppose as a matter of a contradiction that (IC1) is not satisfied with equality:

u(cH)− v
(
yH
θH

)
> u(cL)− v

(
yL
θH

)
Then, because we are assuming u(.) satisfies usual assumptions (including continuity), I can keep this equality holding

by adding a bit to (cL) and subtracting a bit from cH :

u(cH − ε)− v
(
yH
θH

)
> u(cL + δ)− v

(
yL
θH

)
as long as ε and δ are small enough. Now, consider a new contract (cL + δ, yL) and (cH − ε, yH) and choose δ = πHε

πL
.

Then, if we make ε small enough, we have that IC1 holds and Feasibility will be satisfied:

πH(cH − ε) + πL(cL + ε) = πHcH + πLcL + πHε− πL
πH
πL

ε = πHcH + πLcL

So this contract is feasible. Now, we show that this contract induces an increase in welfare even when ε is small but

positive. Let’s compute that change in welfare:

∆W = πH [u(cH − ε)− u(cH)]− πL
[
u

(
(cL +

πHε

πL

)
− u(cL)

]
Now, let’s take the derivative of this change with respect to ε, at ε = 0:

∂∆W

∂ε
= −πHu′(cH) + πL

πH
πL

u′(cL),

= −πHu′(cH) + πHu
′(cL) = πH [u′(cL)− u′(cH)] > 0,

this last inequality follows from the concavity of u(.). Thus, we can rewrite our problem as:

Max
c(θL),y(θL),y(θL),y(θH)

πH

[
u(c(θH))− v

(
y(θH)

θH

)]
+ πL

[
u(c(θL))− v

(
y(θL)

θL

)]
(RP2)
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s.t.

πHc(θH) + πLc(θL) ≤ πHy(θH) + πLy(θL) (FEAS)

u(c(θH))− v
(
y(θH)

θH

)
= u(c(θL))− v

(
y(θL)

θH

)
(IC1)

c(θL) > c(θH) and y(θL) > y(θH) (MONOT )

To finish showing that (IC2) is redundant, it is sufficient to show that at the solution to (RP1), (IC2) is satisfied. In

other words, we need to show that if:

u(cH)− v
(
yH
θH

)
= u(cL)− v

(
yL
θH

)
,

and

cL < cH and yH < yL

then

u(cL)− v
(
yL
θL

)
> u(cH)− v

(
yH
θL

)
The proof is very easy:

v

(
yH
θL

)
− v

(
yL
θL

)
=

∫ yH

yL

v′
(
y

θL

)
dy >

∫ yH

yL

v′
(
y

θH

)
dy = v

(
yH
θH

)
− v

(
yL
θH

)
= u(cH)− u(cL)

Therefore:

u(cL)− v
(
yL
θL

)
> u(cH)− v

(
yH
θL

)
Another way to see this is by taking SP1 directly, let’s take FOCs in the SP1. For this purpose, denote by λ,

µ(θH , θL), and µ(θL, θH) to the Lagrange Multipliers on the resource constraint, IC1 and IC2, respectively:

cL : πLu
′(cL) = λπL + µ(θH , θL)u′(cL)− µ(θL, θH)u′(cL), (11)

cH : πLu
′(cL) = λπH − µ(θH , θL)u′(cH) + µ(θL, θH)u′(cH), (12)

πL
1

θL
v′
(
yL
θL

)
= λπL + µ(θH , θL)

1

θH
v′
(
yL
θH

)
− µ(θL, θH)

1

θL
v′
(
yL
θL

)
; and (13)

πH
1

θH
v′
(
yH
θH

)
= λπH − µ(θH , θL)

1

θH
v′
(
yH
θH

)
+ µ(θL, θH)

1

θL
v′
(
yH
θL

)
; (14)

Something that you have to keep in mind is that these are not sufficient conditions because this problem is not a

concave programming one (because of the potential non-convexity of the feasible set). Also note that in showing that

cH = cL and yH = yL cannot be a solution to (SP1) we did not use any of the previous steps. Try showing now that
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(IC1) holds with equality (should not be hard to do it!). These two results will imply that IC2 will be slack in the

solution. This will imply µ(θH , θL) > 0 and µ(θL, θH) = 0 in the optimum:

[
1 +

µ(θL, θH)− µ(θH , θL)

πL

]
u′(cL) = λ,

[
1 +

µ(θH , θL)− µ(θL, θH)

πH

]
u′(cH) = λ,

Since µ(θH , θL) is a LM it must be true that:

µ(θH , θL)

πL
> 0

Also, since u(.) is strictly increasing and λ is also a LM, then:

1− µ(θH , θL)

πL
≥ 0

0 < 1− µ(θH , θL)

πL
≤ 1

This implies cH > cL in the optimum. Also, we know that at the solution:

u(cH)− v
(
yH
θH

)
= u(cL)− v

(
yL
θH

)
when cH > cL the only possibility for this last expression to hold is that yL < yH . The following proposition

summarizes all of these results.

Proposition 10 The solution to (RP2) is the same as the solution of (SP1). The optimal allocation is monotone in

type, (IC1) holds with equality and (IC2) is slack.

Exercise: Write down this same framework for an arbitrary number of types (N) and show how these results look like

in that case. Hint: should be similar that the 2-types case.

3.2.3 Characterization and Implementation of the Solution

A first-question you must be asking yourself right now is: Who is subsidizing who? In other words, we know that the

high-type consumes and produces more than the low-type. But, is he consuming more than what he produces? or

not? To get this answer, we need to get a result concerning marginal tax rates. Using the last proposition we got, we

can write the planning problem as:

Max
c(θL),y(θL),y(θL),y(θH)

πH

[
u(c(θH))− v

(
y(θH)

θH

)]
+ πL

[
u(c(θL))− v

(
y(θL)

θL

)]
(SP2)

40



s.t.

πHc(θH) + πLc(θL) = πH l(θH)θH + πLl(θL)θL (FEAS)

u(c(θH))− v (l(θH)) = u(c(θL))− v
(
θL
θH

l(θL)

)
(IC)

Denote by λ and µ the LM of the feasibility constraint and the IC constraint, respectively. Then, the Lagrangian can

be written as:

L = πH

[
u(c(θH))− v

(
y(θH)

θH

)]
+ πL

[
u(c(θL))− v

(
y(θL)

θL

)]
+ λ [πH l(θH)θH + πLl(θL)θL − πHc(θH)− πLc(θL)]

+µ

[
u(c(θH))− v (l(θH))− u(c(θL)) + v

(
θL
θH

l(θL)

)]
The FOC’s are:

cH : πHu
′(cH) + µu′(cH) = πHλ;

cL : πLu
′(cL) + µu′(cL) = πLλ;

lH : πHv
′(lH) + µv′(lH) = πHθHλ;

lL : πLv
′(lL) + µ

θL
θH

v′
(
θL
θH

lL

)
= πLθLλ;

Doing some algebra we have:

(πH + µ)v′(lH)

(πH + µ)u′(cH)
=
πHθHλ

πHλ

which means
v′(lH)

θH
= u′(cH) (15)

which is exactly the same condition that we obtained in the Full-Information case. We also have from this FOCs that:

πLv
′(lL)− µ θLθH v

′
(
θL
θH
lL

)
(πL − µ)u′(cL)

=
πLθLλ

πLλ
,

Then:

πL − µ θLθH v
′
(
θL
θH
lL

)
/v′(lL)

(πL − µ)︸ ︷︷ ︸
distortion

v′(lL) = θLu
′(cL) (16)

Now I will show you that µ < πL. To see this, first notice that from the FOCs we have:
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(πH + µ)u′(cH)

(πL − µ)u′(cL)
=
πH
πL

,

so

(πH + µ)u′(cH) =
πH
πL

(πL − µ)u′(cL)

Since (πH + µ)u′(cH) > 0, πH
πL
u′(cL) > 0, it follows that πL − µ > 0. Now, since v′(.) is strictly increasing and θL < θH ,

we have:

v′
(
θL
θH

lL

)
< v′(lL),

which implies v′
(
θL
θH
lL

)
/v′(lL) < 1, and, hence:

θL
θH

v′
(
θL
θH

lL

)
< 1

θL
θH

v′
(
θL
θH

lL

)
µ < µ

And therefore:

πL − µ θLθH
v′
(
θL
θH

lL

)
v′(lL)

(πL − µ)
> 1

because µ < πL. From (16), we have:

v′(lL) =
(πL − µ)

πL − µ θLθH
v′
(
θL
θH

lL

)
v′(lL)

u′(cL) < θLu
′(cL)

v′(lL)

θL
< u′(cL) (17)

Meaning that the value of leisure of low-type individuals is less than their productivity at the margin. In other words,

there is AN IMPLICIT TAX τ such that:

v′(lL)

(1− τ)θL
= u′(cL)

we must have that 0 < τ < 1. Equations (15) and (17) indicate the result of this literature called No distortion at

the top. Meaning that the high-types are undistorted at the margin, but the low-types are.

3.2.4 Average Tax Rates

In this section we will see that average taxes are negative for the low type and positive for the high type.
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Lemma 4 In the optimal allocation:

yH − cH > 0 > yL − cL

Proof. We know that at the optimal allocation, (IC1) holds with equality:

u(cH)− u(cL) = v

(
yH
θH

)
− v

(
yL
θH

)
which can be written as:

∫ cH

cL

u′(c)dc =

∫ yH

yL

1

θH
v′
(
y

θH

)
dy

We also know that:

u′(cH)(cH − cL) <

∫ cH

cL

u′(c)dc < u′(cL)(cH − cL)

Because u(.) is a continuous function, by the Intermediate Value Theorem we know ∃c∗ such that:

∫ cH

cL

u′(c)dc = u′(c∗)(cH − cL) for some c∗ ∈ (cL, cH)

Analogously: ∫ yH

yL

1

θH
v′
(
y

θH

)
dy = (yH − yL)

1

θH
v′
(
y∗

θH

)
for some y∗ ∈ (yL, yH)

Then:

(yH − yL)
1

θH
v′
(
y∗

θH

)
= u′(c∗)(cH − cL)

Now let’s exploit the concavity of u(.) and the convexity of v(.):

u′(c∗) > u′(cH) and
1

θH
v′
(
y∗

θH

)
<

1

θH
v′
(
yH
θH

)
so:

u′(c∗) > u′(cH) =
1

θH
v′
(
yH
θH

)
>

1

θH
v′
(
y∗

θH

)
Thus:

(cH − cL) < (yH − yL)

Meaning that:

yH − cH > yL − cL

From Feasibility constraint we must have that:
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yH − cH > 0 > yL − cL i.e., yH > cH and yL < cL

3.2.5 Implementation with Optimal Taxes

Let’s think now on how we would implement this optimal allocations through decentralized decisions by workers

subject to income taxes. In other words, we want to find a tax scheme T (y) for each type in our economy. The

contractual allocation (c, y) is going to be the solution of the following problem:

Max
c,y

u(c)− v
(
y

θi

)
s.t.

c ≤ y − T (y)

Something that I need to remark is that there is more than one way to implement this optimal allocations. For

example, you could think of the very trivial tax-scheme in which T (yL) = yL − cL, T (yH) = yH − cH and T (y) = y for

any other different value. Another option (a more interesting one) is choosing T(y) so the mapping y → y − T (y)

follows the indifference curve of the low-type for y’s below yL, and follows that of the high-type for y’s above yL; i.e.

for y ≤ yL, u(y − T (y))− v
(
y

θL

)
= u(yL − T (yL))− v

(
yL
θL

)
; and,

for y ≥ yL, u(y − T (y))− v
(
y

θH

)
= u(yH − T (yH))− v

(
yH
θH

)
;

This schedule would have the following effect: It will make the low-type agent indifferent between picking any y ≤ yL,

and the high type indifferent between picking any y ≥ yL. In addition, given the characterization of the contract

above, the low-type will be strictly worse off by picking any y > yL, and the high type strictly worse by picking y < yL.

Just for fun, let’s assume that the effective tax schedule for type i takes the form Ti(yi) = ai + τiyi, at least near the

optimal contractual solution yi. Let’s check the properties of this tax schedule!

Consider first the FOCs of the household problem and denote by λ the LM of the budget constraint:

c : u′(c) = λ; and;

y :
1

θ
v′
(y
θ

)
= λ[1− T ′(y)],

we get the following intratemporal condition:

1

θ
v′ (yθ) = u′(c)[1− T ′(y)], (18)
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If we match equation (15) with equation (18) we corroborate that:

T ′H(yθH ) = 0,

which implies:

τH = 0

meaning that the tax schedule for the high types must look like a lump-sum tax at the optimal level of output (no

distortion at the top of the type distribution).

Now let’s match equation (17) with equation (18). As we can see, we get that:

0 < τL < 1

meaning that the margin must be distorted for low types. Notice that the distortion is towards less work and more

leisure. Why would the planner like the low-type to work less? let’s characterize further our optimal tax schedule: So

far we know that the Tax schedule should look like T (y) = aθ + τθy, with τH = 0 and τL ∈ (0, 1). What can be said

about aθ for each type?

Since the high types consumes less than his output and faces zero marginal tax rate, we should have that aH > 0 near

yH . Then, for the resulting allocation to be optimal, feasibility must hold with equality at the optimum, implying that

aL < 0 near yL.

In summary, we would have that the tax schedule looks exactly like lump-sum near (cH , yH), whereas, near (cL, yL) it

looks like a linear tax. This can be written as:

T ∗(y) = −TL + T ′(yL)yL ∀y ≤ yL, and

T ∗(y) = TH , ∀ y ≥ yL (a lump sum tax)

with TL, TH , and T ′(yL) strictly positive. The expression for τL = T ′(yL) was given above. To find TL and TH we can

use the budget constraints to get:

TL = cL − (1− τL)yL > 0 because cL > yL > (1− τL)yL

and

TH = yH − cH > 0

so why does the planner want to tax output for the low-types, creating a distortion in output? subsidizing the output

of low types creates an incentive for the high-types to pretend they are of the low-type. To prevent this happening,
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the planner must keep the low-types output-consumption schedule on the indifference curve of the high-types. This is

done by putting a linear tax on income near yL. This linear tax avoids high-types to be lying.

3.2.6 Labor Supply Implications

We already know that in the optimum yH > yL. But who is working more? Is it true that lH > lL? This is not easy to

answer ... my Professors say that there is very little know about this. However, to have an idea of what is going on,

we will use 2 elements 1) what we know about the marginal tax rate for the low-types and 2) the fact that there is a

transfer from the high-type to the low-type.

Suppose that there tax scheme looks like the one described in the previous section: a two-part tax schedule that is

linear near the optimal contract. Define l((1− τ)w, T ) as the solution to:

Max
c,l

u(c)− v(l)

s.t.

c ≤ w(1− τ)l + T

Notice first that leisure is a normal good in this problem, and therefore l((1− τ)w, T ) is strictly decreasing in T,

keeping τ and w constant. Then:

lH = yHθH = l((1− τ)w = θH , TH < 0) > l(θH , 0);

meaning that since the high-type suffers a negative transfer and has a zero marginal tax rate, he works more than he

would without taxes (in autarky).

Furthermore, we know that labor supply has an upward slope in net wages: l((1− τ)w, T ) is increasing in (1− τ)w,

holding T fixed. Under this assumption:

lL = l
(
[1− T ′(yL)]θL, TL

)
< l(θL, TL) < l(θH , TL) < l(θH , 0),

The last step comes from the fact that TL > 0, given that leisure is a normal good. As a result we have:

lL < l(θH , 0) < l(θH , TH) = lH

Since leisure is a normal good, and since TH < 0, lH > lceH , ce denotes competitive equilibrium or in this case, the

autarky situation.

Consider a θ-type consumer. Under the linear tax system:
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Max
c,l

u(c)− v(l)

s.t.

c ≤ (1− τ)wl + T

from FOCs:

(1− τ)u′(c) =
1

θ
v′(l),

In autarky or the ex-post CE, where τ = T = 0 for all types, this condition becomes:

u′(cce) = 1θv′(lce),

But when τ ∈ (0, 1), in particular for the low-types we will have:

1

θL
v′(lL) < u′(cL)

We already know that the consumption of the low-types is higher under the optimal contract, relative to the ex-post

competitive equilibrium; cL > cceL . Then:

u′(cL) < u′(cceL ),

because of the concavity of u(.). Therefore:

u′(cL) < u′(cceL ) =
1

θL
v′(lceL ),

implying that:
1

θL
v′(lL) <

1

θL
v′(lceL )

meaning that lL < lceL so low types work less under the optimal contract than in the competitive equilibrium.

Therefore, the relationship between lL and lH could be found if we knew the relationship between the ex post

competitive equilibrium labor supplies, lceL and lceH . If lceL ≤ lceH we can easily conclude that lL < lH .

This is the significance of assuming a labor supply that is upward sloping in net wages.

Exercise: Suppose preferences are given by:

u(c, l) = αlog(c) + (1− α)log(1− l)

Compute TH and TL, lH , lL, lceH , lceL . What is the relation between lceL and lceH .
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4 The New Dynamic Public Finance

So far we have characterized the set of achievable allocations by any mechanism. The goal of the planner is now to

find the best achievable allocation in:

T∑
t=1

βt−1
∑
θT∈D

π(θT )ω(θ1)

[
u(ct(θ

T ))− v
(

(yt(θ
T ))

θt

)]
s.t

T∑
t=1

∑
θT

[
u(ct(θ

T ))− v
(
yt(θ

T ))

θt

)]
≥

T∑
t=1

∑
θT

[
u(ct(α

′
t(θ

T ))− v
(
yt(α

′
t(θ

T ))

θt

)]
for all α′ : D → D (α′t is θt-measurable).

∑
Θ∈D

T∑
t=1

ct(θ
T )π(θT )/Rt−1 ≤

∑
Θ∈D

T∑
t=1

yt(θ
T )π(θT )/Rt−1

(ct, yt) are θT −measurable

ct(θ
T ), yt(θ

T ) ≥ 0 ∀t, θT ∈ D

Notice that we are allowing for the allocation to depend on the realization of θ. In this chapter, our goal is to

characterize the properties of constraint efficient allocations (i.e. allocations that solve the above planner’s problem).

More interestingly, we want to identify what are the inter-temporal distortions that arise from solving this problem.

As we did in the previous chapter, first we study the properties of the model under full information.

4.1 Full information optima

Suppose θt is public information. Then, the planning problem is exactly the same but without the

incentive-compatibility constraint. Denote by λ the multiplier on the feasibility constraint. Then:

∑
θT

π(θT )ω(θ1)u′(ct(θ
T ))βt−1 = λRt−1

∑
θT

π(θT )

The equation above is the FOC with respect to ct(θ
T ) at a particular draw θT . We know that ct(θ

T ) is

θt −measurable, therefore we don’t need to sum over all θT ∈ D, but only those that contain the particular history θt.

∑
θT \θt

π(θT )ω(θ1)u′(ct(θ
T ))βt−1 =

λ

Rt−1

∑
θT \θt

π(θT )

by measurability of ct(θ
T ).

u′(ct(θ
T ))βt−1ω(θ1) = λ/Rt−1
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Note: his implies that ct(θ
T ) is θ1-measurable at the optimum, meaninig that it is independent from θt fpr t > 1. In

other words, the planner will provide full insurance. Furthermore, we can obtain the following Euler Equation:

u′(ct(θ
T )) = βRE

[
u′(ct+1(θT ))\θt

]
planner is happy to allow access to outside trade. Another thing to notice is that the following Euler equation also

holds:

1

u′(ct(θT ))
= λ−1βt−1Rt−1ω(θ1) =

1

βR
E
[

1

u′(ct+1(θT )
\θt
]

4.1.1 Inverse Euler Equation

Consider again the planner problem with incentive-compatibility constraints. Denote by (c∗, y∗) the solution to this

problem. Now, consider the following perturbation around (c∗, y∗):

y′ = y∗

c′s = c∗s ∀ s 6= t, t+ 1 (for fixed t)

for all histories θt

u(c′t(θ
T )) + βu(c′t+1(θT )) = k + u(c∗t (θ

T )) + βu(c∗t+1(θT )) ∀θt+1 such that π(θt+1\θt) > 0

∑
θT \θt

π(θT )[c′t(θ
T ) + c′t+1(θT )/R] =

∑
θT \θt

π(θT )[c∗t (θ
T ) + c∗t+1(θT )/R]

Something to notice is that (c′, y′) is feasible and incentive compatible. What exactly are we doing here?

We are perturbing u(ct(θ
T )) by some amount and then make an appropriate perturbation in every immediate history

following θt so that incentive compatibility is preserved. If (c∗, y∗) is the solution to the Planner’s problem, this

perturbation cannot improve welfare. One implication of this is that (c∗, y∗) solves the following maximization

problem and k = 0 at the optimal solution:

Max
k,c′t(θ

T ),c′t+1(θT )
k

s.t.

u(c′t(θ
T )) + βu(c′t+1(θT )) = k + u(c∗t (θ

T )) + βu(c∗t+1(θT )) ∀ θt, θt+1

such that π(θt+1)\θt) > 0

∑
θT \θt

π(θT )[c′t(θ
T ) + c′t+1(θT )/R] =

∑
θT \θt

π(θT )[c∗t (θ
T ) + c∗t+1(θT )/R]
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Denote by η(θt+1) and λ the Lagrange Multipliers associated to this problem. If we take FOCs we get:

∑
θt+1\θt

η(θt+1)u′(c′t(θ
T )) = λ

∑
θT \θt

π(θT ) = λπ(θt)

for all θt, θt+1 such that π(θt+1\θt) > 0.

βu′(c′t(θ
t+1))η(θt+1) =

λ

R

∑
θT \θt+1

π(θT ) = λπ(θt+1)/R

Substitute for η(θt+1): ∑
θt+1\θt

λπ(θt+1)/R

βu′(c′t(θ
t+1))

u′(c′t(θ
T )) = λπ(θt)

Cancel terms adn evaluate this at the solution c′ = c∗:

βR

u′(c∗t (θ
T ))

=
∑

θt+1\θt

π(θt+1)

π(θt)

1

u′(c∗t+1(θT ))
(19)

Something important here is that the intertemporal condition only depends on consumption, which is observable.

Something you have to notice here is that to derive this result, a key assumption was having additive separability in

the utility function. This result implies that it is not desirable for the planner allowing access to savings. Why? to see

why let’s look at the following Euler equation (which holds if there is access to savings):

u′(ct(θ
t)) = βR

∑
θt+1\θt

π(θt+1)

π(θt
u′(ct+1(θT )) (20)

How is this related to our Inverse Euler Equation?

u′(ct(θ
T )) = βR

1∑
θt+1\θt

π(θt+1)
π(θt)

1
u′(c∗t+1(θT ))

> βR
1
1∑

θt+1\θt
π(θt+1)

π(θt)
u′(c∗t+1(θT ))

so notice that in a ’constrained-efficient’ allocation, individuals are ’constrained-efficient’. This means, if individuals

can ’privately save’. they will choose to do so and it is desirable for the planner to prevent them to do that. Another

way of seeing this is by the following:

Suppose equation (20) holds. Then we must have:

βR

u′(c∗t (θ
T ))

<
∑

θt+1\θt

π(θt+1)

π(θt)

1

u′(c∗t+1(θT ))

Suppose now that the planner wants to increase utility at time t by ε and decrease it at time t+ 1 by β−1ε. The cost

of increase of utility in period 1 is u′(ct(θ
T ))/ε. At the same time, the planner hands in u′(ct+1(θT ))/ε less at each

θt+1 that follows θt. Therefore it can free up resources.
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4.1.2 On dynamics of consumption

Consider again the full information optimal allocation:

u′(ct(θ
T ))βt−1ω(θ1) =

λ

Rt−1

Assume for simplicity βR = 1. Then:

1. Allocation is independent of history.

2. There is no mobility in short-run or long-run.

3. Inequality is constant.

How about the private information case? Suppose θt is iid and consider two different stories θt, θ̃t.

u′(ct(θ
T \θt)) = βR

∑
θt+1\θt

π(θt+1)

π(θt)
u′(ct+1(θT \θt))

u′(ct(θ
T \θ̃t)) = βR

∑
θt+1\θt

π(θt+1)

π(θt)
u′(ct+1(θT \θ̃t))

and notice that π(θT \θ̃t) = π(θT \θt). Now suppose that u′(ct(θ
T \θt)) > u′(ct(θ

T \θ̃t)), then there exists a history θt+1

such that π(θt+1\θt) = π(θt+1\θ̃t) and:

u′(ct+1(θT \θt)) > u′(ct+1(θT \θ̃t))

meaning that good shocks up to period t has persistent effect on period t+ 1 allocations. Let’s talk about inequality

now:

For exposition purposes, assume u(c) = log(c), then u′(c) = 1
c . Let’s depart from the Inverse Euler Equation (βR = 1):

1

u′(ct(θT ))
= E

[
1

u′(ct+1(θT ))
\θt
]

Let’s see what happens to the variance of consumption over time:

V ar

(
1

u′(ct(θT ))

)
= V ar

(
E
[

1

u′(ct+1(θT ))
\θt
])

= V ar

(
1

u′(ct+1(θT ))

)
− E

[
V ar

(
1

u′(ct+1(θT ))
\θt
)]

If V ar
(

1
u′(ct+1(θT ))

\θt
)
> 0 for some θt, then:

V ar

(
1

u′(ct(θT ))

)
< V ar

(
1

u′(ct+1(θT ))

)
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and therefore:

V ar(ct(θ
T )) < V ar(ct+1(θT ))

So this is saying that inequality grows and it is efficient!! How about mobility? In short-run there is mobility. What

about long-run?

Notice that 1
u′(ct)

is a martingale (βR = 1). We also know by feasibility that E
[

1
u′(ct+1)

]
<∞.

Martingale Convergence Theorem: If {xt}∞t=1 is a stochastic process adadpted to filteration {Ft}∞t=1 such that

xt = E[xt+1\Ft] and E[xt] <∞ for all t, then:

lim
t→∞

xt
a.s.→ x∞ <∞

where x∞ is a random variable with E[x∞] <∞. Therefore, 1
u′(ct)

converges to a finite number and hence there is not

mobility in the long-run.

4.2 Long-run properties of efficient allocations

If you are interested in this section, read Farhi and Werning (2005, 2007, 2010), Phelan (2006) and Atkeson and Lucas

(1992). We will maintain the following assumptions:

• T =∞

• Theta = {θL, θH}

• θt iid over time

The proves of the following results will be loose. For more rigurousity please read the papers above.

Immiseration Result

Again, for simplicity assume βR = 1 and consider the following planning problem:

w0 = max
T∑
t=1

βt−1
∑
θT∈D

π(θt)

[
u(ct(θ

t))− v
(
yt(θ

t

θt

)]
(21)

s.t.
T∑
t=1

∑
θt

π(θt)

[
u(ct(θ

t))− v
(
yt(θ

t

θt

)]
≥

T∑
t=1

∑
θt

π(θt)

[
u(ct(α

′
t(θ

t)))− v
(
yt(α

′
t(θ

t)

θt

)]
for all α′ : D → D (α′t is θt-measurable).

∑
θt

T∑
t=1

π(θt)[ct(θ
t)− yt(θt)]/Rt−1 ≤ 0
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We can express this problem in its dual form:

K(w0) = min
∑
θt

T∑
t=1

π(θt)[ct(θ
t)− yt(θt)]/Rt−1 (22)

s.t.
T∑
t=1

∑
θt

π(θt)

[
u(ct(θ

t))− v
(
yt(θ

t

θt

)]
≥

T∑
t=1

∑
θt

π(θt)

[
u(ct(α

′
t(θ

t)))− v
(
yt(α

′
t(θ

t)

θt

)]
T∑
t=1

βt−1
∑
θT∈D

π(θt)

[
u(ct(θ

t))− v
(
yt(θ

t

θt

)]
≥ w0

K(U0) would be the cost of delivering ex-ante utility U0 for everyone. We want to write this recursively: consider an

allocation (ct(θ
t), yt(θ

t). Consider a history θ
t
. Now, define the ex-ante utility for an agent with history θ

t
under this

plan as:

wt(θ
t
) =

∞∑
s=t

∑
θs\θt

π(θs)βs−t
[
u(cs(θ

s))− v
(
ys(θ

s

θs

)]

Let’s call ωt(θ
t
) the ’promised utility’ after history θ

t
. Denote by (c∗t (θ

t), y∗t (θ
t)) the solution of the problem in (22).

Denote by w∗t (θ
t
) the promised utility after history θ

t
. It is possible to show that (c∗t (θ

t
, θt+1), y∗t (θ

t
, θt+1), w∗t (θ

t
, θt+1))

solve the following Bellman equation at w = w∗(θt) (imposing βR = 1:

K(w) = min
c,y,w

∑
θ

π(θ)[c(θ, w)− y(θ, w) + βK(w′(θ, w))]

s.t.

u(c(θ, w))− v
(
y(θ, w)

θ

)
+ βw′(θ, w) ≥ u(c(θ′, w))− v

(
y(θ′, w)

θ

)
+ βw′(θ′, w) ∀θ, θ′

∑
θ

π(θ)

[
u(c(θ, w))− v

(
y(θ, w)

θ

)
+ βw′(θ, w)

]
≥ w

We call this second constraint the ’promise keeping’ constraint.

Proposition 11 K(w) is strictly increasing and strictly convex (assumption on v(.) is needed). Also, let w and w be

the lowest and highest possible values for promised utility. Then, limw→wK
′(w) = 0 and

limw→wK
′(w) = limw→wK(w) = 0.

Let µ(θ, θ′) be the multiplier on the Incentive compatibility constraint and φ be the multiplier on promise keeping.

First order condition with respect to c(θ, U) is:

u′(c(θ, w))

[∑
θ′

µ(θ, θ′)−
∑
θ′

µ(θ′, θ) + π(θ)φ

]
= π(θ)
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and with respect to w′(θ, U): [∑
θ′

µ(θ, θ′)−
∑
θ′

µ(θ′, θ) + π(θ)φ

]
= π(θ)K ′(w′(θ, w)) (23)

and therefore:

K ′(w′(θ, w)) =
1

u′(c(θ, w))

this brings to the table the following lemma:

Lemma 5 Given any w ∈ [w,w], if w′(θ, w) = w′(θ′, w) for some θ, θ′ ∈ Θ, then c(θ, w) = c′(θ, w)

Grab equation (23) and sum over θ:∑
θ

π(θ)K ′(w′(θ, w)) =
∑
θ

∑
θ′

µ(θ, θ′)−
∑
θ

∑
θ′

µ(θ′, θ) + φ = φ

From the envelope condition we have:

K ′(w) = φ

therefore

K ′(w) =
∑
θ

π(θ)K ′(w′(θ, w))

Now start from a given w0 and construct the stochastic process wt as follows:

wt+1 = w′(θt, wt)

then:

K ′(wt) = Et[K ′(wt+1)]

hence wt is a martingale. By martingale convergence theorem there must exist a w∞ such that wt → w∞. Suppose

K ′(w∞) > 0. Note that convergence implies:

w′(θ, w∞) = w′(θ′, w∞) ∀θ, θ′

and therefore

c(θ, w∞) = c(θ′, w∞) ∀θ, θ′

and then incentive compatibility implies:

y(θ, w∞) = y(θ′, w∞) ∀θ, θ′

but we know from our two type example that the planner can do better by differentiating various θ types. Therefore,

this is a contradiction. Hence K ′(w∞) = 0 and w∞ = w.
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4.2.1 No Immiseration Result

Consider the following planner in which the Planner valus future consumption more than the agent (β̂ > β):

w0 = max

T∑
t=1

β̂t−1
∑
θT∈D

π(θt)

[
u(ct(θ

t))− v̂
(
yt(θ

t

θt

)]
(24)

s.t.
T∑
t=1

∑
θt

π(θt)

[
u(ct(θ

t))− v̂
(
yt(θ

t

θt

)]
≥

T∑
t=1

∑
θt

π(θt)

[
u(ct(α

′
t(θ

t)))− v̂
(
yt(α

′
t(θ

t)

θt

)]
for all α′ : D → D (α′t is θt-measurable).

∑
θt

T∑
t=1

π(θt)[ct(θ
t)− yt(θt)]/Rt−1 ≤ 0

and make the following assumptions:

• β̂R = 1

• v̂
(y
θ

)
= v(y)

θ

• u(.) is unbounded below, hence w = −∞

• E
[

1
θ

]
= 1

Let’s assume that the problem above has a solution and let’s denote by λ̂ the multiplier on the resources constraint.

Then the solution of the problem above must also be a solution of:

P (w0) = max
T∑
t=1

β̂t−1
∑
θT∈D

π(θt)

[
u(ct(θ

t))− v(yt(θ
t))

θt
− λ̂ct(θt) + λ̂yt(θ

t)

]
(25)

s.t.
T∑
t=1

∑
θt

π(θt)

[
u(ct(θ

t))− v(yt(θ
t))

θt

]
≥

T∑
t=1

∑
θt

π(θt)

[
u(ct(α

′
t(θ

t)))− v(yt(α
′
t(θ

t)))

θt

]
for all α′ : D → D (α′t is θt-measurable).

T∑
t=1

βt−1
∑
θT∈D

π(θt)

[
u(ct(θ

t))− v(yt(θ
t))

θt

]
≥ w0

We can show that this problem also solves the following Bellman equation (after any history):

P (w) = max
c,y,w′

∑
θ

π(θ)

[
u(c(θ, w))− v(y(θ, w))

θ
− λ̂c(θ, w) + λ̂y(θ, w) + β̂P (w′(θ, w))

]
(26)

s.t.
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u(c(θ, w))− v(y(θ, w))

θ
+ βw′(θ, w) ≥ u(c(θ′, w))− v(y(θ′, w))

θ
+ βw′(θ′, w) ∀θ, θ′

∑
θ

π(θ)

[
u(c(θ, w))− v(y(θ, w))

θ
+ βw′(θ, w)

]
≥ w

what we want to show is that in this problem, in the long-run the promised utility can not be misery w∞ → −∞. To

show this, we use two lemmas:

Lemma 6 The value function P (w) is strictly concave and continuously differentiable on (−∞, w). Furthermore:

lim
v→−∞

P (w) = lim
v→w

P (w) = lim
v→w

P ′(w) = −∞

and

lim
v→−∞

P ′(w) = 1

I will skip the proof of concavity and differentiability (should be quite standard). I will sketch part of what I

understood from Hosseini notes about the rest of the lemma:

PFI(w) = max
T∑
t=1

β̂t−1
∑
θT∈D

π(θt)

[
u(ct(θ

t))− v(yt(θ
t))

θt
− λ̂ct(θt) + λ̂yt(θ

t)

]
s.t.

T∑
t=1

β̂t−1
∑
θT∈D

π(θt)

[
u(ct(θ

t))− v(yt(θ
t))

θt

]
≥ w

In other words, PFI(w) is the value to the planner from delivering utility w to individual when the IC constraint is

ignored. This would naturally imply that PFI(w) > P (w). Also, PFI(w) is strictly concave and differentiable. Now

consider the following maximization problem:

m = max
c,y,θ

u(c)− v(y)

θ
− λ̂c+ λ̂y

The problem above has a solution u′(c) = λ̂, v′(y) = λ̂θ, and θ belongs to a compact set. Now, notice that:

PFI(w) =

T∑
t=1

β̂t−1
∑
θT∈D

π(θt)

[
u(ct(θ

t))− v(yt(θ
t))

θt
− λ̂ct(θt) + λ̂yt(θ

t)

]

=
T∑
t=1

β̂t−1
∑
θT∈D

π(θt)

[
u(ct(θ

t))− v(yt(θ
t))

θt
− λ̂ct(θt) + λ̂yt(θ

t)

]

+
T∑
t=1

βt−1
∑
θT∈D

π(θt)

[
u(ct(θ

t))− v(yt(θ
t))

θt
− λ̂ct(θt) + λ̂yt(θ

t)

]

−
T∑
t=1

βt−1
∑
θT∈D

π(θt)

[
u(ct(θ

t))− v(yt(θ
t))

θt
− λ̂ct(θt) + λ̂yt(θ

t)

]
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= w +

T∑
t=1

βt−1
∑
θT∈D

π(θt)[−λ̂ct(θt) + λ̂yt(θ
t)]+

T∑
t=1

(β̂t−1 − βt−1)
∑
θT∈D

π(θt)

[
u(ct(θ

t))− v(yt(θ
t))

θt
− λ̂ct(θt) + λ̂yt(θ

t)

]

≤ w +
T∑
t=1

βt−1
∑
θT∈D

π(θt)[−λ̂ct(θt) + λ̂yt(θ
t)] +m

(
1

1− β̂
− 1

1− β

)

≤ w − λ̂K̃(w) +m

(
1

1− β̂
− 1

1− β

)
in which

K̃(w) = min

T∑
t=1

βt−1
∑
θT∈D

π(θt)[ct(θ
t)− yt(θt)]

s.t.
T∑
t=1

βt−1
∑
θT∈D

π(θt)

[
u(ct(θ

t))− v(yt(θ
t))

θt

]
≥ w

Notice that K̃(w) is strictly convex and differentiable and also limw→−∞ K̃
′(w) = 0. Define Pmax(w) = w− K̃(w) +m.

Then Pmax(w) ≥ PFI(w) and both are strictly concave. Also, limw→−∞ PFI(w) ≤ limw→−∞ Pmax(w) = −∞.

Therefore, limw→−∞ P
′
FI(w) ≤ limw→−∞ P

′
max(w) = 1.

Notice also that limw→−∞ P (w) ≤ limw→−∞ PFI(w) = −∞ and since both are strictly concave:

lim
w→−∞

P ′(w) ≤ lim
w→−∞

P ′FI(w) = 1

lim
w→−∞

P ′(w) ≤ 1

Now consider allocations (c(w0, θ
t)), y(w0, θ

t)) that solve the original problem. Let’s say they attain the value P (w0)

and define new allocations (c̃(w, θt), ỹ(w, θt)) for w ≤ w0 as:

c̃(w, θt) = c(w0, θ
t) ∀θt∀t

ỹ(w, θt) = y(w0, θ
t) ∀θt∀t > 1

ỹ(w, θ1) = v−1(v(y(w0, θ1)) + w0 − w)

Now define Pm(w) for w ≤ w0 as:

Pm(w) =

T∑
t=1

β̂t−1
∑
θT∈D

π(θt)

[
u(c̃(w, θt))− v(ỹ(w, θt))

θ
− λ̂c̃(w, θt) + λ̂ỹ(w, θt)

]

=
∑
θ1

π(θ1)

[
u(c̃(w0, θ1))− v(y(w0, θ1)) + w0 − w

θ1
− λ̂c(w0, θ1) + λ̂ỹ(w0, θ1)

]
+
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T∑
t=2

β̂t−1
∑
θT∈D

π(θt)

[
u(c̃(w0, θ

t))− v(ỹ(w0, θ
t))

θ
− λ̂c̃(w0, θ

t) + λ̂ỹ(w0, θ
t)

]

=
∑
θ1

π(θ1)

[
w − w0

θ1
+ λ̂ỹ(w, θ1)

]
+
∑
θ1

π(θ1)

[
u(c̃(w0, θ1))− v(y(w0, θ1))

θ1
− λ̂c(w0, θ1)

]
+

T∑
t=2

β̂t−1
∑
θT∈D

π(θt)

[
u(c̃(w0, θ

t))− v(ỹ(w0, θ
t))

θ
− λ̂c̃(w0, θ

t) + λ̂ỹ(w0, θ
t)

]
Note that Pm(w) is strictly concave, Pm(w) ≤ P (w). Also, only the first term depends on w. Therefore:

P ′m(w) = 1− λ̂E
[

1

v′(v(y(w, θ0)) + w0 − w)

]
and limw→−∞ P

′
m(w) = 1.

Therefore, limw→−∞ P
′(w) ≥ limw→−∞P

′
m(w) = 1. Hence, it has been proved that limw→−∞ P

′(w) = 1.

Q.E.D.

In the next lemma we will be showing that 1− P (w′(w, θ)) can be bounded above and below for all θ. Again, let’s

rewrite problem (23) as:

P (w) = max
c,y,w′

∑
θ

π(θ)

[
u(c(θ, w))− v(y(θ, w))

θ
− λ̂c(θ, w) + λ̂y(θ, w) + β̂P (w′(θ, w))

]
(27)

s.t.

u(c(θ, w))− v(y(θ, w))

θ
+ βw′(θ, w) ≥ u(c(θ′, w))− v(y(θ′, w))

θ
+ βw′(θ′, w) ∀θ, θ′

∑
θ

π(θ)

[
u(c(θ, w))− v(y(θ, w))

θ
+ βw′(θ, w)

]
≥ w

Suppose only the IC constraints of the high types are binding. Denote by µ and φ the multipliers on IC and

promise-keeping, respectively. Taking FOCs we have:
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