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Introduction

Heterogeneity can be introduced in NGM in several ways:

1 Preferences

2 Initial conditions

3 Productivity

We can introduce heterogeneity both on consumers and firms.

Heterogeneous agent model allow us to tackle new questions regarding, for example,
inequality.

They also allow to answer better old questions regarding business cycles and economic
growth.
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A Model with Incomplete Markets and Idiosyncratic Shocks

The following seminal papers are the origin of this literature:

Bewley (JET-1977).

Aiyagari (QJE-1994, JPE-1995).

Hugget ( JEDC-1993, JME-1996).
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The Basic Model - Idiosyncratic Productivity

Continuum of agents (measure 1).

In each period, agents draw λit from a Markovian distribution. λit determines idiosyncratic
productivity.

Ex-ante agents are identical (same initial assets ai0 and initial productivity λi0.

Their different stories of λit will make them different in the future.

In particular, agents will have different assets ait and productivity λit
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The Basic Model - Aggregate uncertainty?

Therefore, in period 0 everyone solves the same problem.

By LLN, there is individual uncertainty but NOT aggregate uncertainty:

Lt ≡
∫ 1

0
λitdi = 1
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The Basic Model - Incomplete Markets

There is only one available asset in the economy. This asset is assumed to be risk-free.

Agents only can insure themselves against negative shocks by accumulating this asset.

A borrowing-constraint is also assumed to be present.
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The Basic Model - Individual Problem

Each agent solves:

Max
ct ,at+1

E
∞∑
t=0

βtu(ct)

s.t.

ct + at+1 = Rtat + wtλt

at+1 ≥ −φ

a0, λ0 given
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Competitive Equilibrium

A CE in this economy is a set of contingent plans for individual quantities ct(λ
t), at+1(λt),

sequences for aggregate quantities Yt , Kt and prices wt Rt such that:

Given a0 ≥ −φ, λ0 > 0, wt , Rt and the stochastic process λ, ct(λ
t) and at+1(λt) solves:

Max
ct ,at+1

∞∑
t=0

∑
λt∈Λt

βtπ(λt)u(ct(λ
t)) s.t.

ct(λ
t) + at+1(λt) = wtλt + Rtat(λ

t−1)

at+1(λt) ≥ −φ ∀λt , ∀t
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Competitive Equilibrium

In each period, given wt and Rt , Yt and Kt solve the firm’s problem:

Max Yt − wt − [Rt − (1− δ)]Kt

Yt = f (Kt)

In each period, markets clear:

Yt =
∑
λt

π(λt)
[
ct(λ

t) + at+1(λt)− (1− δ)at(λ
t−1)

]
Kt =

∑
λt

π(λt)at(λ
t−1)
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Some Remarks

Agents make exactly the same contingent plans. Why?

Consumption and assets of each individual depends on the historiy of their shocks.

By LLN, π(λt) is the fraction of agents with a story λt .
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Complete Markets and Arrow-Debreu

Efficient allocation in this economy solves:

Kt+1
Ct

∞∑
t=0

βtu(Ct)

s.t.

Ct + Kt+1 − (1− δ)Kt = f (Kt) ∀t

K0 given

Since ex-ante everyone is identical Ct = ct .

That means, efficient allocaiton has perfect insurance!
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Is it possible to implement the efficient allocation?

With incomplete markets and borrowing constraints, it is not.

We could decentralize the solution in two different ways though:
1 With Arrow-Debreu securities:

∞∑
t=0

∑
λt∈Λt

pt(λ
t)ct(λ

t) =
∞∑
t=0

∑
λt∈Λt

pt(λ
t)wtλt

2 With Sequential Markets

ct(λ
t) +

∑
λt+1\λt

at+1(λt+1\λt) = wtλt + Rtat(λ
t\λt−1)
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Recursive Formulation

Let’s go back to our incomplete markets model.

Individual state variables are a and λ.

Fraction of agents with assets a ≤ a∗ and productivity λ ≤ λ∗ is µ(a∗, λ∗):

µ : S ≡ [−φ,∞)x [λmin, λmax ]→ [0, 1]

ĺım
a→∞

µt(a, λmax) = 1

µ is the aggregate state variable:∫
S
adµ(a, λ) = K

∫
S
λdµ(a, λ) = L = 1
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Recursive Competitive Equilibrium

A Recursive Competitive Equilibrium is a set of functions v(a, λ, µ), c(a, λ, µ), a′(a, λ, µ),
prices w(µ) and R(µ), aggregate capital K (µ) and a law of motion Γ(µ) such that:

For each triple (a, λ, µ), given the functions w , r , Γ, the value function v(a, λ, µ) solves
the following Bellman equation:

v(a, λ, µ) = Max
c,a′

u(c) + βEλv(a′, λ′, µ′)

s.t. c + a′ = w(µ)λ+ R(µ)a

a′ ≥ −φ

λ′ ∼ Π(λ)

µ′ = Γ(µ)

c(a, λ, µ), a′(a, λ, µ) are optimal decision rules for this problem.
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Recursive Competitive Equilibrium

For each distribution prices satisfy:

R(µ) = f ′(K (µ)) + (1− δ)

w(µ) = f (K (µ))− f ′(K (µ))K (µ)

For each distribution µ, markets clear:

f (K (µ)) =

∫
S

[c(a, λ, µ) + a′(a, λ, µ)− (1− δ)a]dµ(a, λ)

K (µ) =

∫
S
adµ(a, λ) 1 =

∫
S
λdµ(a, λ)

For each µ, Γ is consistent with individual decisions.
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Steady State

It is an equilibrium in which aggregate quantities Ct , Kt and prices wt and Rt are
constant.

This means, it is an equilibrium in which µ∗ = Γ(µ∗)
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Interest rate and incomplete markets

Our analysis is focused in steady state.

In steady state, the interest rate with incomplete markets will be lower than in a complete
markets scenario.

Why? Precautionary savings!

Let’s show this result formally.
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Interest rate and incomplete markets

In steady state, the Bellman equation is:

v(a, λ) = Max
c,a′

u(c) + βEλv(a′, λ′)

s.t.

c + a′ = w∗λ+ R∗a

a′ ≥ −φ

Taking FOC we have:

−u′(c) + βEλva(a′, λ′) ≤ 0 (= if a > −φ)

combining this with Benveniste-Scheinkman we have:

u′(c) ≥ βR∗Eλu′(c) (= if a > −φ)
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Result: In any steady state for this economy: R < 1
β

I show this result for an i .i .d shock λ.

Define total resources as z ≡ w∗λ+ R∗a + φ and rewrite problem as:

v(z) = max
c,a′

{
u(c) + βEv(z ′)

}
c + a′ = z − φ

a′ ≥ −φ

z ′ = w∗λ′ + R∗a′ + φ

labor and capital income are perfect substitutes. Agent only cares about the summation
of those.
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Result: In any steady state for this economy: R < 1
β

Using properties of T-operator (Bellman), show v(z) is strictly concave.

Apply Benveniste-Scheinkman and get:

v ′(z) = R∗u′(c(z))

Since u and v are strictly concave in z, c is strictly increasing in z.

Assets have an upper bound if there is z such that:

z = w∗λmax + R∗a′(z) + φ
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Result: In any steady state for this economy: R < 1
β

Write Euler Equation as:

v ′(z) ≥ βR∗Ev ′(z ′)

Then
v ′(z) ≥ βR∗Ev ′(w∗λ′ + R∗a′(z) + φ)

Since v ′ is strictly decreasing:

Ev ′(w∗λ′ + R∗a′(z) + φ) =
∑
λ

π(λ)v ′(w∗λ+ R∗a′(z) + φ)

> v ′(w∗λmax + R∗a′(z) + φ) = v ′(z)
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Result: In any steady state for this economy: R < 1
β

Combining the last 2 steps we have:

v ′(z) > βR∗v ′(z)

then R∗ ≥ 1
β implies a contradiction (v ′(z) > v ′(z))

Concluding R ≥ 1
β implies there is not a superior z , which means assets grow without

limit.

Then, in any steady state we should have R∗ < 1
β .
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Precautionary Savings

Going back to the planner’s problem that represents the complete-markets solution:

Max
∞∑
t=0

βtu(ct)

s.t.

Ct + Kt+1 − (1− δ)Kt = f (Kt)

K0 given

Taking FOC we will obtain:

u′(Ct)

βu′(Ct+1)
= f ′(Kt+1) + (1− δ) = Rt
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Precautionary Savings

Then in a steady-state equilibrium:

R∗ = f ′(K ∗) + (1− δ) =
1

β

This means:

R∗eq < R∗plan =
1

β

which implies
K ∗eq > K ∗plan
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What do we learn from this?

In a model with idiosyncratic shocks, incomplete markets and credit constraints, agents
save more than the efficient amount.

This is because they need to mitigate the effects of bad realizations of productivity shocks.

When agents are hit by negative shock, agents may be affected by the borrowing
constraints, so they need to use their own savings.

Therefore, agents save for precaution.
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