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Introduction

Can we formulate the neoclassical growth model with uncertainty
using the recursive language? what are the state variables in this
case?

Individual and aggregate capital.

History of the shocks?

In general, the probability distribution for the shock of next period
depends on all the history of past and current realizations ... unless
the stochastic variable follows a Markov process.
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First Order Markov Process

A first-order Markovian stochastic process satisfies:

Prob(zt+1\z t) = Prob(zt+1\zt)

An i.i.d shock can be seen as a special case of a Markovian process.

In several applications, we will use a discrete first-order Markovian
process, characterized by the state space:

Z = (Z1, ...,Zq)
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First Order Markov Process

And the stationary transition matrix:

Π =


π(Z1,Z1) π(Z1,Z2) .... π(Z1,Zq)
π(Z2,Z1) π(Z2,Z2) .... π(Z2,Zq)

.... .... .... ....
π(Zq,Z1) π(Zq,Z2) .... π(Zq,Zq)



where

π(Zi ,Zj) = Prob(zt+1 = Zj\zt = Zi )

and
∑q

j=1 π(Zi ,Zj) = 1
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First Order Markov Process

Defining the probability distribution (Inconditional):

πt =


π1t
π2t
....
πqt

 =


Prob(zt = Z1)
Prob(zt = Z2)

....
Prob(zt = Zq)



The vector πt evolves according to:

πTt+1 = πTt xΠ

A probability distribution π∗ is invariant if π∗T = π∗T xΠ
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First Order Markov Process

A Markov Process is asymptotically stationary if, departing from any
π0, ĺımt→∞ πt = π∗.

Result: If all the elements of Π are strictly positive, the
correspondent process is asymptotically stationary and converges to a
unique invariant distribution.
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Continuous case

In other cases we will work with continuous Markovian processes, like
an AR(1):

z ′ = µ+ ρz + ε′

ε′N(µ, σ2)

where ε is a random variable, normally distributed with zero mean and
variance σ2. If −1 < ρ < 1 this process is stationary and its moments
are constant over time.
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Stochastic Recursive Competitive Equilibrium

A stochastic recursive competitive equilibrium is a set of functions
v(k ,K , z), c(k ,K , z), i(k,K , z) and k ′(k ,K , z), prices w(K , z) and
r(K , z) and law of motion Γ(K , z) such that:

For each threesome (k ,K , z), given the functions w, r, Γ, the value
function v(k ,K , z) solves the Bellman’s equation of the consumer:

v(k,K , z) = maxc,i ,k ′
{
u(c) + βEzv(k ′,K ′, z ′)

}
s.t.

c + i = w(K , z) + r(K , z)k

k ′ = (1− δ)k + i

K ′ = Γ(K , z)

and c(k ,K , z), k ′(k ,K , z), i(k,K , z) are optimal decision rules for this
problem.
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Stochastic Recursive Competitive Equilibrium

For each pair (K , z), prices satisfy the marginal conditions:

r(K , z) = ez f ′(K )

w(K , z) = ez f (K )− ez f ′(K )K

For each pair (K , z), markets clear:

ez f (K , z) = c(K ,K , z) + i(K ,K , z)

For each (K , z), the aggregate law of motion of capital is consistent
with the behavior of agents:

Γ(K , z) = k ′(K ,K , z)
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Expected Value Function

The expected value function of next period is defined as:

If z follows a discrete first-order Markovian process with state space
Z = (Z1, ...,Zq) and transition matrix Π, then:

Ezv(k ′,K ′, z ′) =

q∑
j=1

π(z ,Zj)v(k ′,K ′,Zj)

If z follows an AR(1) with conditional density g(z ′\z), then:

Ezv(k ′,K ′, z ′) =

∫
Z
v(k ′,K ′, z ′)g(z ′\z)dz ′
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Social Planner’s Problem

A benevolent social planner chooses functions v(k , z), c(k , z), i(k , z),
k ′(k , z) that solve the Bellman’s equation:

v(k, z) = maxc,i ,k ′
{
u(c) + βEzv(k ′, z ′)

}
s.t.

c + i = ez f (k)

k ′ = (1− δ)k + i

As before, the welfare theorems hold and the solution to this problem is
equivalent to the one that is obtained in the competitive equilibrium.

Notice that the correspondent contingent plans can be found using the
optimal decision rule: kt+1(z t) = k ′(k ′(k ′(...), zt−1), zt)
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Stochastic Dynamic Programming

Consider the following Bellman equation:

v(x , z) = maxy
{
F (x , z , y) + βEzv(y , z ′)

}
s.t.

y ∈ Ω(x , z)

where z follows a first-order Markovian process.

The results of existence, uniqueness and contraction still hold under the
same conditions for X ,F ,Ω, β plus some extra technical assumptions
about the stochastic process (Chapter 9).

These extra assumptions are satisfied automatically with discrete
Markovian processes.
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Value Function Iteration

To implement numerically this method, we assume that the
technological shock z follows a first-order Markovian process with
state space Z = (Z1, ...,Zq) and transition matrix Π.

Using the contraction mapping theorem, if we depart from a function
v0, the sequence vn defined by:

vn+1(k , z) = maxk ′

u[ez f (k) + (1− δ)k − k ′] + β

q∑
j=1

π(z ,Zj)v
n(k ′,Zj)


s.t.

k ′ ∈ [0, ez f (k) + (1− δ)k]

converges to the solution of the social planner if n→∞.
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Value Function Iteration

Initial set-up:

Define a grid of capital K = (K1,K2, ...Kp) for the capital k.

Define a state matrix S as follows:

S =


(K1,Z1) (K2,Z1) .... (Kp,Z1)
(K1,Z2) (K2,Z2) .... (Kp,Z2)
.... .... .... ....

K1,Zq) (K2,Zq) .... (Kp,Zq)


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Value Function Iteration

Define the operator Φ:

Φ(S) =



(K1,Z1)
....

(K1,Zq)
(K2,Z1)
....

(Kp,Zq)

 Φ−1





(K1,Z1)
....

(K1,Zq)
(K2,Z1)
....

(Kp,Zq)



 = S

In Matlab, Φ(A) is written as A(:); while Φ−1(B) is written as
reshape(B, q, p).
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Value Function Iteration

Build the Matrix M of pqxp as:

M =



F (S11,K1) F (S11,K2) .... F (S11,Kp)
.... .... .... ....

F (S1q,K1) F (S1q,K2) .... F (S1q,Kp)
F (S21,K1) F (S21,K2) .... F (S21,Kp)

.... .... .... ....
F (Spq,K1) F (Spq,K2) .... F (Spq,Kp)


where:

F (Sij ,Kl) = F (Ki ,Kj ,Kl) = u[eZj f (Ki ) + (1− δ)Ki − Kl ]

M stores the return function evaluated at each possible combination
[(k , z), k ′] in the grid.
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Value Function Iteration

Drop the non-feasible entries by doing:

F (Sij ,Kl) ≡ F (Ki ,Zj ,Kl) = −100000

if Kl > eZj f (Ki ) + (1− δ)Ki

As before we are preventing the algorithm to choose not feasible
choices for the planner.

Build the auxiliar matrix E of pqxq as:

E =


Iq
Iq
....
Iq

 Iq is the identity of qxq
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Value Function Iteration-Algorithm

1 Propose an initial column vector V 0inRpq (For example, V 0 = 0) and
initialize s = 0.

2 Given V s and M, compute V s+1 as:

V s+1 = max
{
M + β[Ex(ΠxΦ−1(V s))]

}
where the maximum is calculated by rows.

Calculate the distance between V s+1 and V s . If the distance is greater
than the tolerance criteria, go to step 2 with s = s + 1. Otherwise, the
algorithm converges.
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Value Function Iteration-Algorithm

As before, we obtain an approximation to the value function of the
Social Planner v at every point of the states of the grid.

Together with the correspondent decision rule G:

G = argmax{M + β[Ex(ΠxΦ−1(V ))]}

A column vector of pq components, where Gi ∈ {1, .., p} indicates the
number of the column that maximizes the row i.

Results convenient to work with the reordered decision rule as a
matrix: Ĝ = Φ−1(G ).

.
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Optimal Path Simulation

The optimal trajectory of capital depends on the history of the
realizations for z.

To obtain a particular time series k0, k1, ...kT departing from (k0, z0)
we need first to simulate the history z0, z1, ..., zT using a random
numbers generator and the information of the transition matrix Π.

Given z0 = Zi , extract z1 from Z assigning the probability πij to the
state Zj .

Recursively, given zn = Zi extract zn+1 of Z assigning the probability
πij to the state Zj .

Continue until you get the history z0, z1, ..., zT .
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Optimal Path Simulation

One the history of the shocks is known, we calculate recursively the
optimal path for the capital (k0, k1, ..., kT ) using the decision rule G.

kt = Kj

zt = Zi
→ kt+1 = KĜij

And then we calculate the optimal path for the other variables. This
paths represent time series and their moments can be calculated
(mean, variance, correlations between them). In this way, we can
compare the statistical moments of the model with the data.

However, these time series depend on a particular realization of the
shocks.

Therefore, it is recommendable to make a large simulation
(T = 10000) leaving the first 1000 periods so we can approximate the
statistics of the invariant distribution (LLN).
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