Introduction to Measure Theory

Diego Ascarza

RIEF

Introduction

- Most of the results in Chapter 4 carry over almost without change to situations in which the return function is subject to stochastic shocks and the objective is to maximize the expected value of discounted returns.
- To show this, it is convenient to draw upon some of the terminology and results from modern probability theory and from the theory of Markov Processes.
- In particular, we will be interested, for instance, in solving problems of the form:

$$v(x,z) = \max_{0 \le y \le f(x)z} \{ U(f(x)z - y) + \beta \mathbb{E}[v(y,z')] \}$$
 (1)

Sigma Algebra and Measurable Spaces

- **Def:** Let S be a set and let \mathbb{L} be a family of subsets of S. \mathbb{L} is called a σ algebra if:
 - $\Phi, S \in \mathbb{L}$
 - ② $A \in \mathbb{L}$ implies $A^c = S \setminus A \in \mathbb{L}$; and

For a set S what we want to ask is in what family of subsets of S are measures, including probability measures.

• **Def:** A pair (S, \mathbb{L}) where S is a set and \mathbb{L} is a σ – algebra of its subsets is called a **measurable space**. Any set $A \in \mathbb{L}$ is called a \mathbb{L} -measurable set.

Borel Algebra

- An important example of σ -algebra is the one generated by the collection of all open intervals.
- In particular, define $\mathfrak A$ as the collection of all open intervals in $\mathbb R$. That is, all the intervals of the form $(-\infty,b)$, (a,b), $(a,+\infty)$ and $(-\infty,+\infty)$. Note that every σ algebra containing $\mathfrak A$ must also contain all of the closed intervals.
- The smallest σ -algebra containing all of the open sets is a class that is used in many applications and it is called the Borel's σ -algebra.

Measures

- Measures: Let (S, \mathbb{L}) be a measurable space. A measure is an extended-real value function $\mu : \mathbb{L} \to \overline{\mathbb{R}}$ such that:
 - **1** $\mu(\Phi) = 0$;
 - $2 \mu(A) \geq 0$, all $A \in \mathbb{L}$
 - ③ If $\{A_n\}_{n=1}^{\infty}$ is a countable, disjoint sequence of subsets in \mathbb{L} , then $\mu(\{A_n\}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \mu(A_n)$.

Then a measure is non-negative, assigns zero to the null set and is countably additive. If $\mu(S) < \infty$, then μ is finite.

Measure Space

Measure Space: is a triple (S, \mathbb{L}, μ) where S is a set, \mathbb{L} is a σ -algebra of its subsets, and μ is a measure defined on \mathbb{L} .

- Given a measure space, we say that a proposition holds mu-almost everywhere if \exists a set $A \in \mathbb{L}$ with $\mu(A) = 0$ such that the proposition holds on A^c
- If $\mu(S) = 1$, then μ is a probability measure and (S, \mathbb{L}, μ) is called a probability space.

Completition

Let (S, \mathbb{L}, μ) be a measure space. Let $A \in \mathbb{L}$ be any set with measure zero, and let C be any subset of A. Let \mathcal{C} be the family of all such sets. That is:

$$C = \{C \subset \mathbb{L} : C \subseteq A \text{ for some } A \in \mathbb{L} \text{ with } \mu(A) = 0\}$$

Now consider starting with any set $B \in \mathbb{L}$; and then adding and substracting from it sets in \mathcal{C} . The **completition** of \mathbb{L} is the family \mathbb{L}' of sets constructed in this way. That is:

$$\mathbb{L}' = \{B' \subseteq S : B' = (B \cup C_1 \backslash C_2, B \in \mathbb{L}, C_1, C_2 \in \mathcal{C}\}\$$

For any Euclidean space \mathbb{R} , the completition of the Borel sets is a family called the **Lebesgue measurable sets**, and the extension to this family of the measure corresponding to length, area, and so on is called **Lebesgue measure**. When restricted to the Borel sets it is called either Lebesgue measure or **Borel measure**.

Caratheodory Extension Theorem

Theorem

Let S be a set, $\mathfrak A$ an algebra of its subsets, and μ a measure on $\mathfrak A$. Let $\mathfrak C$ be the completition of the smallest σ -algebra containing A. Then \exists a measure μ^* on $\mathfrak C$, such that $\mu(\mathfrak A)=\mu^*(\mathfrak A)$, all $A\in \mathfrak A$.

Measurable Functions

- We are interested in defining probability measures on the state space S so that we could talk sensibly about expressions like $\mathbb{E}(f)$, the expected value of a real function f(.) defined on S.
- We need to know then for which functions can expressions like $\mathbb{E}(f)$ be reasonably interpreted.
- **Definition:** Given a measurable space (S, \mathbb{L}) , a real-valued function $f: S \to \mathbb{R}$ is **measurable with respect to** \mathbb{L} (or **L-measurable**) if:

$${s \in S : f(s) \le a} \in \mathbb{L}, \quad \forall a \in \mathbb{R}$$

If the σ -algebra is understood, such a function is called **measurable**. If the space in question is a probability space, f is called a **random** variable.

Pointwise Convergence

Theorem

Let (S, \mathbb{L}) be a measurable space, and let $\{f_n\}$ be sequence of \mathbb{L} -measurable functions converging pointwise to f:

$$\lim_{n\to\infty} f_n(s) = f(s), \quad \forall s \in S$$

Then f is also \mathbb{L} -measurable.

Measurable Functions

- **Definition:** Let (S, \mathbb{L}) and (T, \mathbb{T}) be measurable spaces. Then the function $f: S \to T$ is **measurable** if the inverse image of every measurable set is measurable, that is, if $\{s \in S : f(s) \in A\} \in \mathbb{L}$, \forall $A \in \mathbb{T}$.
- **Definition:** Let (S, \mathbb{L}) and (T, \mathbb{T}) be measurable spaces, and let Γ be a correspondence of S into T. Then the function $h: S \to T$ is a **measurable selection from** Γ if h is measurable and $h(s) \in \Gamma(s)$, $\forall s \in S$.

Measurable Selection Theorem

Theorem

Let $S \subseteq \mathbb{R}^I$ and $T \subseteq \mathbb{R}^m$ be Borel sets, with their Borel subsets \mathbb{L} and \mathbb{T} . Let $\Gamma: S \to T$ be a nonempty compact-valued and uhc. correspondence. Then there exists a measurable selection from Γ .

Integration

- So far we have seen how to define a probability space (Z, \mathbb{L}, μ) for the random shocks, and probably you have guessed that the function v has to be \mathbb{L} -measurable.
- In this section we combine these to pieces to develop an integration theory.
- The integral developed here is called "Lebesgue Integral.and it uses the "Lebesgue measure". This integral is more general than the Riemann integral and it includes, as well as operations like $\sum_i \pi_i f(s_i)$ involving discrete probabilities, as special cases.
- Of course, the Riemann and the Lebesgue integral coincide with each other when the former exists.
- Lebesgue's theory of integration can be extended to real-valued functions on any measure space (S, \mathbb{L}, μ) . For example, if μ is a probability measure, $\int_S f(s)\mu(ds)$ is the expected value of the rv f wrt the distribution μ .